--- library_name: transformers pipeline_tag: text-generation tags: - unsloth --- # Model Card for LocAgent This model is described in the paper [LocAgent: Graph-Guided LLM Agents for Code Localization](https://huggingface.co/papers/2503.09089). LocAgent uses a graph-based code representation to enable LLMs to perform accurate code localization, significantly improving accuracy compared to existing methods. Notably, the fine-tuned Qwen-2.5-Coder-Instruct-32B model achieves near state-of-the-art performance with a substantial cost reduction. Code: https://github.com/gersteinlab/LocAgent ## How to Use LocAgent involves two main steps: graph indexing and code localization. **1. Graph Indexing (Optional but Recommended):** For efficient batch processing, pre-generate graph indexes for your codebase using `dependency_graph/batch_build_graph.py`. This script parses the codebase into a graph representation. See the Github README for detailed command-line arguments and setup instructions. Example: ```bash python dependency_graph/batch_build_graph.py \ --dataset 'czlll/Loc-Bench' \ --split 'test' \ --num_processes 50 \ --download_repo ``` **2. Code Localization:** Use `auto_search_main.py` to perform code localization. This script leverages LLMs to search and locate relevant code entities within the pre-generated graph indexes. See the Github README for detailed command-line arguments and environment variable setup. Example: ```bash python auto_search_main.py \ --dataset 'czlll/SWE-bench_Lite' \ --split 'test' \ --model 'azure/gpt-4o' \ --localize \ --merge \ --output_folder $result_path/location \ --eval_n_limit 300 \ --num_processes 50 \ --use_function_calling \ --simple_desc ``` **3. Evaluation:** After localization, evaluate the results using `evaluation.eval_metric.evaluate_results`. An example Jupyter Notebook is provided in `evaluation/run_evaluation.ipynb`. ## Citation ```bibtex @article{chen2025locagent, title={LocAgent: Graph-Guided LLM Agents for Code Localization}, author={Chen, Zhaoling and Tang, Xiangru and Deng, Gangda and Wu, Fang and Wu, Jialong and Jiang, Zhiwei and Prasanna, Viktor and Cohan, Arman and Wang, Xingyao}, journal={arXiv preprint arXiv:2503.09089}, year={2025} } ```