PyTorch
Safetensors
qwen2
unsloth
trl
sft
cvGod commited on
Commit
ac67e23
·
verified ·
1 Parent(s): b98b84f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -2
README.md CHANGED
@@ -9,5 +9,67 @@ datasets:
9
  - Kedreamix/psychology-10k-Deepseek-R1-zh
10
  ---
11
 
12
- python:
13
- def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  - Kedreamix/psychology-10k-Deepseek-R1-zh
10
  ---
11
 
12
+ # Model Card for DeepSeek-R1-Psychology-COT
13
+
14
+ ## Model Description
15
+ This model is a fine-tuned version of the DeepSeek-R1-Psychology-COT model, designed for specific tasks in the psychology domain using Chain-of-Thought (CoT) reasoning.
16
+
17
+ ## Usage
18
+
19
+ ### Fine-tuning Code Example
20
+
21
+ Below is the code to fine-tune the model using the `unsloth` and `trl` libraries:
22
+
23
+ ```python
24
+ # Modules for inference
25
+ import unsloth
26
+ from unsloth import FastLanguageModel
27
+ import torch # Import PyTorch
28
+ from trl import SFTTrainer # Trainer for supervised fine-tuning (SFT)
29
+ from unsloth import is_bfloat16_supported # Checks if the hardware supports bfloat16 precision
30
+ # Hugging Face modules
31
+ from transformers import TrainingArguments # Defines training hyperparameters
32
+ from datasets import load_dataset # Lets you load fine-tuning datasets
33
+
34
+ model_id = "cvGod/DeepSeek-R1-Psychology-COT"
35
+ model, tokenizer = FastLanguageModel.from_pretrained(
36
+ model_name=model_id,
37
+ max_seq_length=2048,
38
+ dtype=None,
39
+ load_in_4bit=True,
40
+
41
+ )
42
+
43
+ prompt_style = """以下是一项任务说明,并附带了更详细的背景信息。
44
+ 请撰写一个满足完成请求的回复。
45
+ 在回答之前,请仔细考虑问题,并创建一个逐步的思考链,以确保逻辑和准确的回答。
46
+
47
+ ### Instruction:
48
+ 你是一个专业的心里专家专家,请你根据以下问题回答。
49
+ ### Question:
50
+ {}
51
+ ### Response:
52
+ {}"""
53
+ EOS_TOKEN = tokenizer.eos_token
54
+
55
+ question = """我晚上难以入睡,我认为这是因为我对工作感到压力"""
56
+
57
+ # Load the inference model using FastLanguageModel (Unsloth optimizes for speed)
58
+ FastLanguageModel.for_inference(model) # Unsloth has 2x faster inference!
59
+
60
+ # Tokenize the input question with a specific prompt format and move it to the GPU
61
+ inputs = tokenizer([prompt_style.format(question, "")], return_tensors="pt").to("cuda")
62
+
63
+ # Generate a response using LoRA fine-tuned model with specific parameters
64
+ outputs = model.generate(
65
+ input_ids=inputs.input_ids, # Tokenized input IDs
66
+ attention_mask=inputs.attention_mask, # Attention mask for padding handling
67
+ max_new_tokens=1024, # Maximum length for generated response
68
+ use_cache=True, # Enable cache for efficient generation
69
+ )
70
+
71
+ # Decode the generated response from tokenized format to readable text
72
+ response = tokenizer.batch_decode(outputs)
73
+
74
+ # Extract and print only the model's response part after "### Response:"
75
+ print(response[0].split("### Response:")[1])