import argparse import json from dataclasses import dataclass from pathlib import Path from typing import List, Optional, Tuple import mlx.core as mx import mlx.nn as nn import numpy import numpy as np from mlx.utils import tree_unflatten from transformers import AutoConfig, AutoTokenizer, PreTrainedTokenizerBase class TransformerEncoderLayer(nn.Module): """ A transformer encoder layer with (the original BERT) post-normalization. """ def __init__( self, dims: int, num_heads: int, mlp_dims: Optional[int] = None, layer_norm_eps: float = 1e-12, ): super().__init__() mlp_dims = mlp_dims or dims * 4 self.attention = nn.MultiHeadAttention(dims, num_heads, bias=True) self.ln1 = nn.LayerNorm(dims, eps=layer_norm_eps) self.ln2 = nn.LayerNorm(dims, eps=layer_norm_eps) self.linear1 = nn.Linear(dims, mlp_dims) self.linear2 = nn.Linear(mlp_dims, dims) self.gelu = nn.GELU() def __call__(self, x, mask): attention_out = self.attention(x, x, x, mask) add_and_norm = self.ln1(x + attention_out) ff = self.linear1(add_and_norm) ff_gelu = self.gelu(ff) ff_out = self.linear2(ff_gelu) x = self.ln2(ff_out + add_and_norm) return x class TransformerEncoder(nn.Module): def __init__( self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None ): super().__init__() self.layers = [ TransformerEncoderLayer(dims, num_heads, mlp_dims) for i in range(num_layers) ] def __call__(self, x, mask): for layer in self.layers: x = layer(x, mask) return x class BertEmbeddings(nn.Module): def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size) self.token_type_embeddings = nn.Embedding( config.type_vocab_size, config.hidden_size ) self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size ) self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def __call__( self, input_ids: mx.array, token_type_ids: mx.array = None ) -> mx.array: words = self.word_embeddings(input_ids) position = self.position_embeddings( mx.broadcast_to(mx.arange(input_ids.shape[1]), input_ids.shape) ) if token_type_ids is None: # If token_type_ids is not provided, default to zeros token_type_ids = mx.zeros_like(input_ids) token_types = self.token_type_embeddings(token_type_ids) embeddings = position + words + token_types return self.norm(embeddings) class Bert(nn.Module): def __init__(self, config): super().__init__() self.embeddings = BertEmbeddings(config) self.encoder = TransformerEncoder( num_layers=config.num_hidden_layers, dims=config.hidden_size, num_heads=config.num_attention_heads, mlp_dims=config.intermediate_size, ) self.pooler = nn.Linear(config.hidden_size, config.hidden_size) def __call__( self, input_ids: mx.array, token_type_ids: mx.array = None, attention_mask: mx.array = None, ) -> Tuple[mx.array, mx.array]: x = self.embeddings(input_ids, token_type_ids) if attention_mask is not None: # convert 0's to -infs, 1's to 0's, and make it broadcastable attention_mask = mx.log(attention_mask) attention_mask = mx.expand_dims(attention_mask, (1, 2)) y = self.encoder(x, attention_mask) return y, mx.tanh(self.pooler(y[:, 0])) def load_model( bert_model: str, weights_path: str ) -> Tuple[Bert, PreTrainedTokenizerBase]: if not Path(weights_path).exists(): raise ValueError(f"No model weights found in {weights_path}") # First check if there's a local config config_path = Path(weights_path).parent / "config.json" if config_path.exists(): with open(config_path, "r") as f: config_dict = json.load(f) config = AutoConfig.for_model(**config_dict) print(f"Loaded local config from {config_path}") else: # If no local config, use the HuggingFace one config = AutoConfig.from_pretrained(bert_model) print(f"Loaded config from HuggingFace for {bert_model}") # Create and update the model print(f"Creating model with vocab_size={config.vocab_size}, hidden_size={config.hidden_size}") model = Bert(config) model.load_weights(weights_path) tokenizer = AutoTokenizer.from_pretrained(bert_model) return model, tokenizer def run(bert_model: str, mlx_model: str, batch: List[str]): import time # Time model loading load_start = time.time() model, tokenizer = load_model(bert_model, mlx_model) load_time = time.time() - load_start print(f"[MLX] Model loaded in {load_time:.2f} seconds") # Time tokenization print(f"[MLX] Tokenizing batch of {len(batch)} sentences") token_start = time.time() tokens = tokenizer(batch, return_tensors="np", padding=True) token_time = time.time() - token_start print(f"[MLX] Tokenization completed in {token_time:.4f} seconds") print(f"[MLX] Tokens shape: input_ids={tokens['input_ids'].shape}") tokens = {key: mx.array(v) for key, v in tokens.items()} # Time inference print(f"[MLX] Running model inference") infer_start = time.time() output, pooled = model(**tokens) mx.eval(output, pooled) # Force evaluation of lazy arrays infer_time = time.time() - infer_start print(f"[MLX] Inference completed in {infer_time:.4f} seconds") return output, pooled if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run the BERT model using MLX.") parser.add_argument( "--bert-model", type=str, default="bert-base-uncased", help="The huggingface name of the BERT model to save.", ) parser.add_argument( "--mlx-model", type=str, default="weights/bert-base-uncased.npz", help="The path of the stored MLX BERT weights (npz file).", ) parser.add_argument( "--text", type=str, default="This is an example of BERT working in MLX", help="The text to generate embeddings for.", ) args = parser.parse_args() run(args.bert_model, args.mlx_model, args.text)