cstr commited on
Commit
e2a6dfb
·
verified ·
1 Parent(s): e17d2b6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +162 -3
README.md CHANGED
@@ -1,3 +1,162 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+ - ar
5
+ - bg
6
+ - ca
7
+ - cs
8
+ - da
9
+ - de
10
+ - el
11
+ - en
12
+ - es
13
+ - et
14
+ - fa
15
+ - fi
16
+ - fr
17
+ - gl
18
+ - gu
19
+ - he
20
+ - hi
21
+ - hr
22
+ - hu
23
+ - hy
24
+ - id
25
+ - it
26
+ - ja
27
+ - ka
28
+ - ko
29
+ - ku
30
+ - lt
31
+ - lv
32
+ - mk
33
+ - mn
34
+ - mr
35
+ - ms
36
+ - my
37
+ - nb
38
+ - nl
39
+ - pl
40
+ - pt
41
+ - ro
42
+ - ru
43
+ - sk
44
+ - sl
45
+ - sq
46
+ - sr
47
+ - sv
48
+ - th
49
+ - tr
50
+ - uk
51
+ - ur
52
+ - vi
53
+ license: apache-2.0
54
+ library_name: sentence-transformers
55
+ tags:
56
+ - sentence-transformers
57
+ - feature-extraction
58
+ - sentence-similarity
59
+ - transformers
60
+ language_bcp47:
61
+ - fr-ca
62
+ - pt-br
63
+ - zh-cn
64
+ - zh-tw
65
+ pipeline_tag: sentence-similarity
66
+ ---
67
+
68
+ # paraphrase-multilingual-MiniLM-L12-v2-mlx
69
+
70
+ This is a mlx (Apple mps framework) converted bert type embedder model.
71
+
72
+ Original model card follows...
73
+
74
+
75
+
76
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
77
+
78
+
79
+
80
+ ## Usage (Sentence-Transformers)
81
+
82
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
83
+
84
+ ```
85
+ pip install -U sentence-transformers
86
+ ```
87
+
88
+ Then you can use the model like this:
89
+
90
+ ```python
91
+ from sentence_transformers import SentenceTransformer
92
+ sentences = ["This is an example sentence", "Each sentence is converted"]
93
+
94
+ model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
95
+ embeddings = model.encode(sentences)
96
+ print(embeddings)
97
+ ```
98
+
99
+
100
+
101
+ ## Usage (HuggingFace Transformers)
102
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
103
+
104
+ ```python
105
+ from transformers import AutoTokenizer, AutoModel
106
+ import torch
107
+
108
+
109
+ # Mean Pooling - Take attention mask into account for correct averaging
110
+ def mean_pooling(model_output, attention_mask):
111
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
112
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
113
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
114
+
115
+
116
+ # Sentences we want sentence embeddings for
117
+ sentences = ['This is an example sentence', 'Each sentence is converted']
118
+
119
+ # Load model from HuggingFace Hub
120
+ tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
121
+ model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
122
+
123
+ # Tokenize sentences
124
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
125
+
126
+ # Compute token embeddings
127
+ with torch.no_grad():
128
+ model_output = model(**encoded_input)
129
+
130
+ # Perform pooling. In this case, max pooling.
131
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
132
+
133
+ print("Sentence embeddings:")
134
+ print(sentence_embeddings)
135
+ ```
136
+
137
+
138
+
139
+ ## Full Model Architecture
140
+ ```
141
+ SentenceTransformer(
142
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
143
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
144
+ )
145
+ ```
146
+
147
+ ## Citing & Authors
148
+
149
+ This model was trained by [sentence-transformers](https://www.sbert.net/).
150
+
151
+ If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
152
+ ```bibtex
153
+ @inproceedings{reimers-2019-sentence-bert,
154
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
155
+ author = "Reimers, Nils and Gurevych, Iryna",
156
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
157
+ month = "11",
158
+ year = "2019",
159
+ publisher = "Association for Computational Linguistics",
160
+ url = "http://arxiv.org/abs/1908.10084",
161
+ }
162
+ ```