|
import argparse |
|
import os |
|
from pathlib import Path |
|
|
|
import numpy |
|
from transformers import AutoModel, AutoConfig |
|
|
|
|
|
def replace_key(key: str) -> str: |
|
key = key.replace(".layer.", ".layers.") |
|
key = key.replace(".self.key.", ".key_proj.") |
|
key = key.replace(".self.query.", ".query_proj.") |
|
key = key.replace(".self.value.", ".value_proj.") |
|
key = key.replace(".attention.output.dense.", ".attention.out_proj.") |
|
key = key.replace(".attention.output.LayerNorm.", ".ln1.") |
|
key = key.replace(".output.LayerNorm.", ".ln2.") |
|
key = key.replace(".intermediate.dense.", ".linear1.") |
|
key = key.replace(".output.dense.", ".linear2.") |
|
key = key.replace(".LayerNorm.", ".norm.") |
|
key = key.replace("pooler.dense.", "pooler.") |
|
return key |
|
|
|
|
|
def convert(bert_model: str, mlx_model: str) -> None: |
|
|
|
model = AutoModel.from_pretrained(bert_model) |
|
config = AutoConfig.from_pretrained(bert_model) |
|
|
|
|
|
output_dir = os.path.dirname(mlx_model) |
|
if output_dir and not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
|
|
|
|
config_path = os.path.join(output_dir, "config.json") |
|
with open(config_path, "w") as f: |
|
f.write(config.to_json_string()) |
|
|
|
print(f"Saved model config to {config_path}") |
|
|
|
|
|
tensors = { |
|
replace_key(key): tensor.numpy() for key, tensor in model.state_dict().items() |
|
} |
|
numpy.savez(mlx_model, **tensors) |
|
print(f"Saved model weights to {mlx_model}") |
|
print(f"Model vocab size: {config.vocab_size}, hidden size: {config.hidden_size}") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Convert BERT weights to MLX.") |
|
parser.add_argument( |
|
"--bert-model", |
|
type=str, |
|
default="bert-base-uncased", |
|
help="The huggingface name of the BERT model to save. Any BERT-like model can be specified.", |
|
) |
|
parser.add_argument( |
|
"--mlx-model", |
|
type=str, |
|
default="weights/bert-base-uncased.npz", |
|
help="The output path for the MLX BERT weights.", |
|
) |
|
args = parser.parse_args() |
|
|
|
convert(args.bert_model, args.mlx_model) |
|
|