cstr's picture
Upload 3 files
e17d2b6 verified
import argparse
import os
from pathlib import Path
import numpy
from transformers import AutoModel, AutoConfig
def replace_key(key: str) -> str:
key = key.replace(".layer.", ".layers.")
key = key.replace(".self.key.", ".key_proj.")
key = key.replace(".self.query.", ".query_proj.")
key = key.replace(".self.value.", ".value_proj.")
key = key.replace(".attention.output.dense.", ".attention.out_proj.")
key = key.replace(".attention.output.LayerNorm.", ".ln1.")
key = key.replace(".output.LayerNorm.", ".ln2.")
key = key.replace(".intermediate.dense.", ".linear1.")
key = key.replace(".output.dense.", ".linear2.")
key = key.replace(".LayerNorm.", ".norm.")
key = key.replace("pooler.dense.", "pooler.")
return key
def convert(bert_model: str, mlx_model: str) -> None:
# Load model and its configuration
model = AutoModel.from_pretrained(bert_model)
config = AutoConfig.from_pretrained(bert_model)
# Create output directory if it doesn't exist
output_dir = os.path.dirname(mlx_model)
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir)
# Save config as well
config_path = os.path.join(output_dir, "config.json")
with open(config_path, "w") as f:
f.write(config.to_json_string())
print(f"Saved model config to {config_path}")
# Save the tensors
tensors = {
replace_key(key): tensor.numpy() for key, tensor in model.state_dict().items()
}
numpy.savez(mlx_model, **tensors)
print(f"Saved model weights to {mlx_model}")
print(f"Model vocab size: {config.vocab_size}, hidden size: {config.hidden_size}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert BERT weights to MLX.")
parser.add_argument(
"--bert-model",
type=str,
default="bert-base-uncased",
help="The huggingface name of the BERT model to save. Any BERT-like model can be specified.",
)
parser.add_argument(
"--mlx-model",
type=str,
default="weights/bert-base-uncased.npz",
help="The output path for the MLX BERT weights.",
)
args = parser.parse_args()
convert(args.bert_model, args.mlx_model)