File size: 6,664 Bytes
e17d2b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import argparse
import json
from dataclasses import dataclass
from pathlib import Path
from typing import List, Optional, Tuple
import mlx.core as mx
import mlx.nn as nn
import numpy
import numpy as np
from mlx.utils import tree_unflatten
from transformers import AutoConfig, AutoTokenizer, PreTrainedTokenizerBase
class TransformerEncoderLayer(nn.Module):
"""
A transformer encoder layer with (the original BERT) post-normalization.
"""
def __init__(
self,
dims: int,
num_heads: int,
mlp_dims: Optional[int] = None,
layer_norm_eps: float = 1e-12,
):
super().__init__()
mlp_dims = mlp_dims or dims * 4
self.attention = nn.MultiHeadAttention(dims, num_heads, bias=True)
self.ln1 = nn.LayerNorm(dims, eps=layer_norm_eps)
self.ln2 = nn.LayerNorm(dims, eps=layer_norm_eps)
self.linear1 = nn.Linear(dims, mlp_dims)
self.linear2 = nn.Linear(mlp_dims, dims)
self.gelu = nn.GELU()
def __call__(self, x, mask):
attention_out = self.attention(x, x, x, mask)
add_and_norm = self.ln1(x + attention_out)
ff = self.linear1(add_and_norm)
ff_gelu = self.gelu(ff)
ff_out = self.linear2(ff_gelu)
x = self.ln2(ff_out + add_and_norm)
return x
class TransformerEncoder(nn.Module):
def __init__(
self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None
):
super().__init__()
self.layers = [
TransformerEncoderLayer(dims, num_heads, mlp_dims)
for i in range(num_layers)
]
def __call__(self, x, mask):
for layer in self.layers:
x = layer(x, mask)
return x
class BertEmbeddings(nn.Module):
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
self.token_type_embeddings = nn.Embedding(
config.type_vocab_size, config.hidden_size
)
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size
)
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def __call__(
self, input_ids: mx.array, token_type_ids: mx.array = None
) -> mx.array:
words = self.word_embeddings(input_ids)
position = self.position_embeddings(
mx.broadcast_to(mx.arange(input_ids.shape[1]), input_ids.shape)
)
if token_type_ids is None:
# If token_type_ids is not provided, default to zeros
token_type_ids = mx.zeros_like(input_ids)
token_types = self.token_type_embeddings(token_type_ids)
embeddings = position + words + token_types
return self.norm(embeddings)
class Bert(nn.Module):
def __init__(self, config):
super().__init__()
self.embeddings = BertEmbeddings(config)
self.encoder = TransformerEncoder(
num_layers=config.num_hidden_layers,
dims=config.hidden_size,
num_heads=config.num_attention_heads,
mlp_dims=config.intermediate_size,
)
self.pooler = nn.Linear(config.hidden_size, config.hidden_size)
def __call__(
self,
input_ids: mx.array,
token_type_ids: mx.array = None,
attention_mask: mx.array = None,
) -> Tuple[mx.array, mx.array]:
x = self.embeddings(input_ids, token_type_ids)
if attention_mask is not None:
# convert 0's to -infs, 1's to 0's, and make it broadcastable
attention_mask = mx.log(attention_mask)
attention_mask = mx.expand_dims(attention_mask, (1, 2))
y = self.encoder(x, attention_mask)
return y, mx.tanh(self.pooler(y[:, 0]))
def load_model(
bert_model: str, weights_path: str
) -> Tuple[Bert, PreTrainedTokenizerBase]:
if not Path(weights_path).exists():
raise ValueError(f"No model weights found in {weights_path}")
# First check if there's a local config
config_path = Path(weights_path).parent / "config.json"
if config_path.exists():
with open(config_path, "r") as f:
config_dict = json.load(f)
config = AutoConfig.for_model(**config_dict)
print(f"Loaded local config from {config_path}")
else:
# If no local config, use the HuggingFace one
config = AutoConfig.from_pretrained(bert_model)
print(f"Loaded config from HuggingFace for {bert_model}")
# Create and update the model
print(f"Creating model with vocab_size={config.vocab_size}, hidden_size={config.hidden_size}")
model = Bert(config)
model.load_weights(weights_path)
tokenizer = AutoTokenizer.from_pretrained(bert_model)
return model, tokenizer
def run(bert_model: str, mlx_model: str, batch: List[str]):
import time
# Time model loading
load_start = time.time()
model, tokenizer = load_model(bert_model, mlx_model)
load_time = time.time() - load_start
print(f"[MLX] Model loaded in {load_time:.2f} seconds")
# Time tokenization
print(f"[MLX] Tokenizing batch of {len(batch)} sentences")
token_start = time.time()
tokens = tokenizer(batch, return_tensors="np", padding=True)
token_time = time.time() - token_start
print(f"[MLX] Tokenization completed in {token_time:.4f} seconds")
print(f"[MLX] Tokens shape: input_ids={tokens['input_ids'].shape}")
tokens = {key: mx.array(v) for key, v in tokens.items()}
# Time inference
print(f"[MLX] Running model inference")
infer_start = time.time()
output, pooled = model(**tokens)
mx.eval(output, pooled) # Force evaluation of lazy arrays
infer_time = time.time() - infer_start
print(f"[MLX] Inference completed in {infer_time:.4f} seconds")
return output, pooled
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the BERT model using MLX.")
parser.add_argument(
"--bert-model",
type=str,
default="bert-base-uncased",
help="The huggingface name of the BERT model to save.",
)
parser.add_argument(
"--mlx-model",
type=str,
default="weights/bert-base-uncased.npz",
help="The path of the stored MLX BERT weights (npz file).",
)
parser.add_argument(
"--text",
type=str,
default="This is an example of BERT working in MLX",
help="The text to generate embeddings for.",
)
args = parser.parse_args()
run(args.bert_model, args.mlx_model, args.text)
|