cstr commited on
Commit
64181b7
·
verified ·
1 Parent(s): 141560c

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +732 -0
README.md ADDED
@@ -0,0 +1,732 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - bigscience/xP3
4
+ - mc4
5
+ license: apache-2.0
6
+ language:
7
+ - af
8
+ - am
9
+ - ar
10
+ - az
11
+ - be
12
+ - bg
13
+ - bn
14
+ - ca
15
+ - ceb
16
+ - co
17
+ - cs
18
+ - cy
19
+ - da
20
+ - de
21
+ - el
22
+ - en
23
+ - eo
24
+ - es
25
+ - et
26
+ - eu
27
+ - fa
28
+ - fi
29
+ - fil
30
+ - fr
31
+ - fy
32
+ - ga
33
+ - gd
34
+ - gl
35
+ - gu
36
+ - ha
37
+ - haw
38
+ - hi
39
+ - hmn
40
+ - ht
41
+ - hu
42
+ - hy
43
+ - ig
44
+ - is
45
+ - it
46
+ - iw
47
+ - ja
48
+ - jv
49
+ - ka
50
+ - kk
51
+ - km
52
+ - kn
53
+ - ko
54
+ - ku
55
+ - ky
56
+ - la
57
+ - lb
58
+ - lo
59
+ - lt
60
+ - lv
61
+ - mg
62
+ - mi
63
+ - mk
64
+ - ml
65
+ - mn
66
+ - mr
67
+ - ms
68
+ - mt
69
+ - my
70
+ - ne
71
+ - nl
72
+ - 'no'
73
+ - ny
74
+ - pa
75
+ - pl
76
+ - ps
77
+ - pt
78
+ - ro
79
+ - ru
80
+ - sd
81
+ - si
82
+ - sk
83
+ - sl
84
+ - sm
85
+ - sn
86
+ - so
87
+ - sq
88
+ - sr
89
+ - st
90
+ - su
91
+ - sv
92
+ - sw
93
+ - ta
94
+ - te
95
+ - tg
96
+ - th
97
+ - tr
98
+ - uk
99
+ - und
100
+ - ur
101
+ - uz
102
+ - vi
103
+ - xh
104
+ - yi
105
+ - yo
106
+ - zh
107
+ - zu
108
+ pipeline_tag: text2text-generation
109
+ widget:
110
+ - text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous
111
+ review as positive, neutral or negative?
112
+ example_title: zh-en sentiment
113
+ - text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?
114
+ example_title: zh-zh sentiment
115
+ - text: Suggest at least five related search terms to "Mạng neural nhân tạo".
116
+ example_title: vi-en query
117
+ - text: Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels».
118
+ example_title: fr-fr query
119
+ - text: Explain in a sentence in Telugu what is backpropagation in neural networks.
120
+ example_title: te-en qa
121
+ - text: Why is the sky blue?
122
+ example_title: en-en qa
123
+ - text: 'Write a fairy tale about a troll saving a princess from a dangerous dragon.
124
+ The fairy tale is a masterpiece that has achieved praise worldwide and its moral
125
+ is "Heroes Come in All Shapes and Sizes". Story (in Spanish):'
126
+ example_title: es-en fable
127
+ - text: 'Write a fable about wood elves living in a forest that is suddenly invaded
128
+ by ogres. The fable is a masterpiece that has achieved praise worldwide and its
129
+ moral is "Violence is the last refuge of the incompetent". Fable (in Hindi):'
130
+ example_title: hi-en fable
131
+ tags:
132
+ - llama-cpp
133
+ - gguf-my-repo
134
+ base_model: bigscience/mt0-large
135
+ model-index:
136
+ - name: mt0-large
137
+ results:
138
+ - task:
139
+ type: Coreference resolution
140
+ dataset:
141
+ name: Winogrande XL (xl)
142
+ type: winogrande
143
+ config: xl
144
+ split: validation
145
+ revision: a80f460359d1e9a67c006011c94de42a8759430c
146
+ metrics:
147
+ - type: Accuracy
148
+ value: 51.78
149
+ - task:
150
+ type: Coreference resolution
151
+ dataset:
152
+ name: XWinograd (en)
153
+ type: Muennighoff/xwinograd
154
+ config: en
155
+ split: test
156
+ revision: 9dd5ea5505fad86b7bedad667955577815300cee
157
+ metrics:
158
+ - type: Accuracy
159
+ value: 54.8
160
+ - task:
161
+ type: Coreference resolution
162
+ dataset:
163
+ name: XWinograd (fr)
164
+ type: Muennighoff/xwinograd
165
+ config: fr
166
+ split: test
167
+ revision: 9dd5ea5505fad86b7bedad667955577815300cee
168
+ metrics:
169
+ - type: Accuracy
170
+ value: 56.63
171
+ - task:
172
+ type: Coreference resolution
173
+ dataset:
174
+ name: XWinograd (jp)
175
+ type: Muennighoff/xwinograd
176
+ config: jp
177
+ split: test
178
+ revision: 9dd5ea5505fad86b7bedad667955577815300cee
179
+ metrics:
180
+ - type: Accuracy
181
+ value: 53.08
182
+ - task:
183
+ type: Coreference resolution
184
+ dataset:
185
+ name: XWinograd (pt)
186
+ type: Muennighoff/xwinograd
187
+ config: pt
188
+ split: test
189
+ revision: 9dd5ea5505fad86b7bedad667955577815300cee
190
+ metrics:
191
+ - type: Accuracy
192
+ value: 56.27
193
+ - task:
194
+ type: Coreference resolution
195
+ dataset:
196
+ name: XWinograd (ru)
197
+ type: Muennighoff/xwinograd
198
+ config: ru
199
+ split: test
200
+ revision: 9dd5ea5505fad86b7bedad667955577815300cee
201
+ metrics:
202
+ - type: Accuracy
203
+ value: 55.56
204
+ - task:
205
+ type: Coreference resolution
206
+ dataset:
207
+ name: XWinograd (zh)
208
+ type: Muennighoff/xwinograd
209
+ config: zh
210
+ split: test
211
+ revision: 9dd5ea5505fad86b7bedad667955577815300cee
212
+ metrics:
213
+ - type: Accuracy
214
+ value: 54.37
215
+ - task:
216
+ type: Natural language inference
217
+ dataset:
218
+ name: ANLI (r1)
219
+ type: anli
220
+ config: r1
221
+ split: validation
222
+ revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
223
+ metrics:
224
+ - type: Accuracy
225
+ value: 33.3
226
+ - task:
227
+ type: Natural language inference
228
+ dataset:
229
+ name: ANLI (r2)
230
+ type: anli
231
+ config: r2
232
+ split: validation
233
+ revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
234
+ metrics:
235
+ - type: Accuracy
236
+ value: 34.7
237
+ - task:
238
+ type: Natural language inference
239
+ dataset:
240
+ name: ANLI (r3)
241
+ type: anli
242
+ config: r3
243
+ split: validation
244
+ revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
245
+ metrics:
246
+ - type: Accuracy
247
+ value: 34.75
248
+ - task:
249
+ type: Natural language inference
250
+ dataset:
251
+ name: SuperGLUE (cb)
252
+ type: super_glue
253
+ config: cb
254
+ split: validation
255
+ revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
256
+ metrics:
257
+ - type: Accuracy
258
+ value: 51.79
259
+ - task:
260
+ type: Natural language inference
261
+ dataset:
262
+ name: SuperGLUE (rte)
263
+ type: super_glue
264
+ config: rte
265
+ split: validation
266
+ revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
267
+ metrics:
268
+ - type: Accuracy
269
+ value: 64.26
270
+ - task:
271
+ type: Natural language inference
272
+ dataset:
273
+ name: XNLI (ar)
274
+ type: xnli
275
+ config: ar
276
+ split: validation
277
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
278
+ metrics:
279
+ - type: Accuracy
280
+ value: 42.61
281
+ - task:
282
+ type: Natural language inference
283
+ dataset:
284
+ name: XNLI (bg)
285
+ type: xnli
286
+ config: bg
287
+ split: validation
288
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
289
+ metrics:
290
+ - type: Accuracy
291
+ value: 43.94
292
+ - task:
293
+ type: Natural language inference
294
+ dataset:
295
+ name: XNLI (de)
296
+ type: xnli
297
+ config: de
298
+ split: validation
299
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
300
+ metrics:
301
+ - type: Accuracy
302
+ value: 44.18
303
+ - task:
304
+ type: Natural language inference
305
+ dataset:
306
+ name: XNLI (el)
307
+ type: xnli
308
+ config: el
309
+ split: validation
310
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
311
+ metrics:
312
+ - type: Accuracy
313
+ value: 43.94
314
+ - task:
315
+ type: Natural language inference
316
+ dataset:
317
+ name: XNLI (en)
318
+ type: xnli
319
+ config: en
320
+ split: validation
321
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
322
+ metrics:
323
+ - type: Accuracy
324
+ value: 44.26
325
+ - task:
326
+ type: Natural language inference
327
+ dataset:
328
+ name: XNLI (es)
329
+ type: xnli
330
+ config: es
331
+ split: validation
332
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
333
+ metrics:
334
+ - type: Accuracy
335
+ value: 45.34
336
+ - task:
337
+ type: Natural language inference
338
+ dataset:
339
+ name: XNLI (fr)
340
+ type: xnli
341
+ config: fr
342
+ split: validation
343
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
344
+ metrics:
345
+ - type: Accuracy
346
+ value: 42.01
347
+ - task:
348
+ type: Natural language inference
349
+ dataset:
350
+ name: XNLI (hi)
351
+ type: xnli
352
+ config: hi
353
+ split: validation
354
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
355
+ metrics:
356
+ - type: Accuracy
357
+ value: 41.89
358
+ - task:
359
+ type: Natural language inference
360
+ dataset:
361
+ name: XNLI (ru)
362
+ type: xnli
363
+ config: ru
364
+ split: validation
365
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
366
+ metrics:
367
+ - type: Accuracy
368
+ value: 42.13
369
+ - task:
370
+ type: Natural language inference
371
+ dataset:
372
+ name: XNLI (sw)
373
+ type: xnli
374
+ config: sw
375
+ split: validation
376
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
377
+ metrics:
378
+ - type: Accuracy
379
+ value: 40.08
380
+ - task:
381
+ type: Natural language inference
382
+ dataset:
383
+ name: XNLI (th)
384
+ type: xnli
385
+ config: th
386
+ split: validation
387
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
388
+ metrics:
389
+ - type: Accuracy
390
+ value: 40.8
391
+ - task:
392
+ type: Natural language inference
393
+ dataset:
394
+ name: XNLI (tr)
395
+ type: xnli
396
+ config: tr
397
+ split: validation
398
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
399
+ metrics:
400
+ - type: Accuracy
401
+ value: 41.29
402
+ - task:
403
+ type: Natural language inference
404
+ dataset:
405
+ name: XNLI (ur)
406
+ type: xnli
407
+ config: ur
408
+ split: validation
409
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
410
+ metrics:
411
+ - type: Accuracy
412
+ value: 39.88
413
+ - task:
414
+ type: Natural language inference
415
+ dataset:
416
+ name: XNLI (vi)
417
+ type: xnli
418
+ config: vi
419
+ split: validation
420
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
421
+ metrics:
422
+ - type: Accuracy
423
+ value: 41.81
424
+ - task:
425
+ type: Natural language inference
426
+ dataset:
427
+ name: XNLI (zh)
428
+ type: xnli
429
+ config: zh
430
+ split: validation
431
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
432
+ metrics:
433
+ - type: Accuracy
434
+ value: 40.84
435
+ - task:
436
+ type: Sentence completion
437
+ dataset:
438
+ name: StoryCloze (2016)
439
+ type: story_cloze
440
+ config: '2016'
441
+ split: validation
442
+ revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
443
+ metrics:
444
+ - type: Accuracy
445
+ value: 59.49
446
+ - task:
447
+ type: Sentence completion
448
+ dataset:
449
+ name: SuperGLUE (copa)
450
+ type: super_glue
451
+ config: copa
452
+ split: validation
453
+ revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
454
+ metrics:
455
+ - type: Accuracy
456
+ value: 65
457
+ - task:
458
+ type: Sentence completion
459
+ dataset:
460
+ name: XCOPA (et)
461
+ type: xcopa
462
+ config: et
463
+ split: validation
464
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
465
+ metrics:
466
+ - type: Accuracy
467
+ value: 56
468
+ - task:
469
+ type: Sentence completion
470
+ dataset:
471
+ name: XCOPA (ht)
472
+ type: xcopa
473
+ config: ht
474
+ split: validation
475
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
476
+ metrics:
477
+ - type: Accuracy
478
+ value: 62
479
+ - task:
480
+ type: Sentence completion
481
+ dataset:
482
+ name: XCOPA (id)
483
+ type: xcopa
484
+ config: id
485
+ split: validation
486
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
487
+ metrics:
488
+ - type: Accuracy
489
+ value: 61
490
+ - task:
491
+ type: Sentence completion
492
+ dataset:
493
+ name: XCOPA (it)
494
+ type: xcopa
495
+ config: it
496
+ split: validation
497
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
498
+ metrics:
499
+ - type: Accuracy
500
+ value: 63
501
+ - task:
502
+ type: Sentence completion
503
+ dataset:
504
+ name: XCOPA (qu)
505
+ type: xcopa
506
+ config: qu
507
+ split: validation
508
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
509
+ metrics:
510
+ - type: Accuracy
511
+ value: 57
512
+ - task:
513
+ type: Sentence completion
514
+ dataset:
515
+ name: XCOPA (sw)
516
+ type: xcopa
517
+ config: sw
518
+ split: validation
519
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
520
+ metrics:
521
+ - type: Accuracy
522
+ value: 54
523
+ - task:
524
+ type: Sentence completion
525
+ dataset:
526
+ name: XCOPA (ta)
527
+ type: xcopa
528
+ config: ta
529
+ split: validation
530
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
531
+ metrics:
532
+ - type: Accuracy
533
+ value: 62
534
+ - task:
535
+ type: Sentence completion
536
+ dataset:
537
+ name: XCOPA (th)
538
+ type: xcopa
539
+ config: th
540
+ split: validation
541
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
542
+ metrics:
543
+ - type: Accuracy
544
+ value: 57
545
+ - task:
546
+ type: Sentence completion
547
+ dataset:
548
+ name: XCOPA (tr)
549
+ type: xcopa
550
+ config: tr
551
+ split: validation
552
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
553
+ metrics:
554
+ - type: Accuracy
555
+ value: 57
556
+ - task:
557
+ type: Sentence completion
558
+ dataset:
559
+ name: XCOPA (vi)
560
+ type: xcopa
561
+ config: vi
562
+ split: validation
563
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
564
+ metrics:
565
+ - type: Accuracy
566
+ value: 63
567
+ - task:
568
+ type: Sentence completion
569
+ dataset:
570
+ name: XCOPA (zh)
571
+ type: xcopa
572
+ config: zh
573
+ split: validation
574
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
575
+ metrics:
576
+ - type: Accuracy
577
+ value: 58
578
+ - task:
579
+ type: Sentence completion
580
+ dataset:
581
+ name: XStoryCloze (ar)
582
+ type: Muennighoff/xstory_cloze
583
+ config: ar
584
+ split: validation
585
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
586
+ metrics:
587
+ - type: Accuracy
588
+ value: 56.59
589
+ - task:
590
+ type: Sentence completion
591
+ dataset:
592
+ name: XStoryCloze (es)
593
+ type: Muennighoff/xstory_cloze
594
+ config: es
595
+ split: validation
596
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
597
+ metrics:
598
+ - type: Accuracy
599
+ value: 55.72
600
+ - task:
601
+ type: Sentence completion
602
+ dataset:
603
+ name: XStoryCloze (eu)
604
+ type: Muennighoff/xstory_cloze
605
+ config: eu
606
+ split: validation
607
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
608
+ metrics:
609
+ - type: Accuracy
610
+ value: 52.61
611
+ - task:
612
+ type: Sentence completion
613
+ dataset:
614
+ name: XStoryCloze (hi)
615
+ type: Muennighoff/xstory_cloze
616
+ config: hi
617
+ split: validation
618
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
619
+ metrics:
620
+ - type: Accuracy
621
+ value: 52.15
622
+ - task:
623
+ type: Sentence completion
624
+ dataset:
625
+ name: XStoryCloze (id)
626
+ type: Muennighoff/xstory_cloze
627
+ config: id
628
+ split: validation
629
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
630
+ metrics:
631
+ - type: Accuracy
632
+ value: 54.67
633
+ - task:
634
+ type: Sentence completion
635
+ dataset:
636
+ name: XStoryCloze (my)
637
+ type: Muennighoff/xstory_cloze
638
+ config: my
639
+ split: validation
640
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
641
+ metrics:
642
+ - type: Accuracy
643
+ value: 51.69
644
+ - task:
645
+ type: Sentence completion
646
+ dataset:
647
+ name: XStoryCloze (ru)
648
+ type: Muennighoff/xstory_cloze
649
+ config: ru
650
+ split: validation
651
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
652
+ metrics:
653
+ - type: Accuracy
654
+ value: 53.74
655
+ - task:
656
+ type: Sentence completion
657
+ dataset:
658
+ name: XStoryCloze (sw)
659
+ type: Muennighoff/xstory_cloze
660
+ config: sw
661
+ split: validation
662
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
663
+ metrics:
664
+ - type: Accuracy
665
+ value: 55.53
666
+ - task:
667
+ type: Sentence completion
668
+ dataset:
669
+ name: XStoryCloze (te)
670
+ type: Muennighoff/xstory_cloze
671
+ config: te
672
+ split: validation
673
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
674
+ metrics:
675
+ - type: Accuracy
676
+ value: 57.18
677
+ - task:
678
+ type: Sentence completion
679
+ dataset:
680
+ name: XStoryCloze (zh)
681
+ type: Muennighoff/xstory_cloze
682
+ config: zh
683
+ split: validation
684
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
685
+ metrics:
686
+ - type: Accuracy
687
+ value: 59.5
688
+ ---
689
+
690
+ # cstr/mt0-large-Q4_K_M-GGUF
691
+ This model was converted to GGUF format from [`bigscience/mt0-large`](https://huggingface.co/bigscience/mt0-large) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
692
+ Refer to the [original model card](https://huggingface.co/bigscience/mt0-large) for more details on the model.
693
+
694
+ ## Use with llama.cpp
695
+ Install llama.cpp through brew (works on Mac and Linux)
696
+
697
+ ```bash
698
+ brew install llama.cpp
699
+
700
+ ```
701
+ Invoke the llama.cpp server or the CLI.
702
+
703
+ ### CLI:
704
+ ```bash
705
+ llama-cli --hf-repo cstr/mt0-large-Q4_K_M-GGUF --hf-file mt0-large-q4_k_m.gguf -p "The meaning to life and the universe is"
706
+ ```
707
+
708
+ ### Server:
709
+ ```bash
710
+ llama-server --hf-repo cstr/mt0-large-Q4_K_M-GGUF --hf-file mt0-large-q4_k_m.gguf -c 2048
711
+ ```
712
+
713
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
714
+
715
+ Step 1: Clone llama.cpp from GitHub.
716
+ ```
717
+ git clone https://github.com/ggerganov/llama.cpp
718
+ ```
719
+
720
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
721
+ ```
722
+ cd llama.cpp && LLAMA_CURL=1 make
723
+ ```
724
+
725
+ Step 3: Run inference through the main binary.
726
+ ```
727
+ ./llama-cli --hf-repo cstr/mt0-large-Q4_K_M-GGUF --hf-file mt0-large-q4_k_m.gguf -p "The meaning to life and the universe is"
728
+ ```
729
+ or
730
+ ```
731
+ ./llama-server --hf-repo cstr/mt0-large-Q4_K_M-GGUF --hf-file mt0-large-q4_k_m.gguf -c 2048
732
+ ```