File size: 7,462 Bytes
1b9a505
 
 
 
 
 
 
 
 
 
 
 
cceedc4
1b9a505
 
 
 
 
 
 
 
f4c2a23
1b9a505
e86e51d
de8f831
 
 
 
 
 
 
 
 
 
 
 
 
68446c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b9a505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
---
tags:
- merge
- mergekit
- lazymergekit
- flemmingmiguel/NeuDist-Ro-7B
- Blizado/discolm-mfto-7b-german-v0.1
- ResplendentAI/Flora_DPO_7B
base_model:
- flemmingmiguel/NeuDist-Ro-7B
- Blizado/discolm-mfto-7b-german-v0.1
- ResplendentAI/Flora_DPO_7B
license: cc-by-sa-4.0
---

# Spaetzle-v12-7b

Spaetzle-v12-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [flemmingmiguel/NeuDist-Ro-7B](https://huggingface.co/flemmingmiguel/NeuDist-Ro-7B)
* [Blizado/discolm-mfto-7b-german-v0.1](https://huggingface.co/Blizado/discolm-mfto-7b-german-v0.1)
* [ResplendentAI/Flora_DPO_7B](https://huggingface.co/ResplendentAI/Flora_DPO_7B)
* on the basis of [mayflowergmbh/Wiedervereinigung-7b-dpo-laser](https://huggingface.co/mayflowergmbh/Wiedervereinigung-7b-dpo-laser) 

As expected, this is a little bit worse in general English tasks over [cstr/spaetzle-v8-7b](https://huggingface.co/cstr/spaetzle-v8-7b), but a tiny little bit better on German tasks, at least some: e.g. it reaches an EQ-Bench (de)
score of 64.81, but only

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |69.36|
|AI2 Reasoning Challenge (25-Shot)|65.96|
|HellaSwag (10-Shot)              |86.16|
|MMLU (5-Shot)                    |63.48|
|TruthfulQA (0-shot)              |57.84|
|Winogrande (5-shot)              |80.03|
|GSM8k (5-shot)                   |62.70|


|                            Model                             |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|--------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[Spaetzle-v12-7b](https://huggingface.co/cstr/Spaetzle-v12-7b)|  42.64|   74.3|     58.44|   44.44|  54.95|

### AGIEval
|             Task             |Version| Metric |Value|   |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat              |      0|acc     |24.02|±  |  2.69|
|                              |       |acc_norm|21.65|±  |  2.59|
|agieval_logiqa_en             |      0|acc     |36.10|±  |  1.88|
|                              |       |acc_norm|37.63|±  |  1.90|
|agieval_lsat_ar               |      0|acc     |24.35|±  |  2.84|
|                              |       |acc_norm|23.04|±  |  2.78|
|agieval_lsat_lr               |      0|acc     |48.82|±  |  2.22|
|                              |       |acc_norm|47.25|±  |  2.21|
|agieval_lsat_rc               |      0|acc     |60.59|±  |  2.98|
|                              |       |acc_norm|57.99|±  |  3.01|
|agieval_sat_en                |      0|acc     |76.21|±  |  2.97|
|                              |       |acc_norm|74.76|±  |  3.03|
|agieval_sat_en_without_passage|      0|acc     |46.60|±  |  3.48|
|                              |       |acc_norm|45.63|±  |  3.48|
|agieval_sat_math              |      0|acc     |37.27|±  |  3.27|
|                              |       |acc_norm|33.18|±  |  3.18|

Average: 42.64%

### GPT4All
|    Task     |Version| Metric |Value|   |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge|      0|acc     |59.13|±  |  1.44|
|             |       |acc_norm|61.26|±  |  1.42|
|arc_easy     |      0|acc     |83.67|±  |  0.76|
|             |       |acc_norm|80.89|±  |  0.81|
|boolq        |      1|acc     |87.83|±  |  0.57|
|hellaswag    |      0|acc     |66.45|±  |  0.47|
|             |       |acc_norm|84.63|±  |  0.36|
|openbookqa   |      0|acc     |37.40|±  |  2.17|
|             |       |acc_norm|45.80|±  |  2.23|
|piqa         |      0|acc     |82.15|±  |  0.89|
|             |       |acc_norm|83.13|±  |  0.87|
|winogrande   |      0|acc     |76.56|±  |  1.19|

Average: 74.3%

### TruthfulQA
|    Task     |Version|Metric|Value|   |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc|      1|mc1   |42.59|±  |  1.73|
|             |       |mc2   |58.44|±  |  1.58|

Average: 58.44%

### Bigbench
|                      Task                      |Version|       Metric        |Value|   |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement                       |      0|multiple_choice_grade|55.26|±  |  3.62|
|bigbench_date_understanding                     |      0|multiple_choice_grade|64.77|±  |  2.49|
|bigbench_disambiguation_qa                      |      0|multiple_choice_grade|37.60|±  |  3.02|
|bigbench_geometric_shapes                       |      0|multiple_choice_grade|32.31|±  |  2.47|
|                                                |       |exact_str_match      |21.45|±  |  2.17|
|bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|31.00|±  |  2.07|
|bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|22.43|±  |  1.58|
|bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|53.00|±  |  2.89|
|bigbench_movie_recommendation                   |      0|multiple_choice_grade|40.40|±  |  2.20|
|bigbench_navigate                               |      0|multiple_choice_grade|51.30|±  |  1.58|
|bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|68.50|±  |  1.04|
|bigbench_ruin_names                             |      0|multiple_choice_grade|48.66|±  |  2.36|
|bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|30.36|±  |  1.46|
|bigbench_snarks                                 |      0|multiple_choice_grade|70.17|±  |  3.41|
|bigbench_sports_understanding                   |      0|multiple_choice_grade|70.39|±  |  1.45|
|bigbench_temporal_sequences                     |      0|multiple_choice_grade|31.00|±  |  1.46|
|bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|21.44|±  |  1.16|
|bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|18.29|±  |  0.92|
|bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|53.00|±  |  2.89|

Average: 44.44%

Average score: 54.95%

Elapsed time: 02:50:51

## 🧩 Configuration

```yaml
models:
  - model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
    # no parameters necessary for base model
  - model: flemmingmiguel/NeuDist-Ro-7B
    parameters:
      density: 0.60
      weight: 0.30
  - model: Blizado/discolm-mfto-7b-german-v0.1
    parameters:
      density: 0.65
      weight: 0.40
  - model: ResplendentAI/Flora_DPO_7B
    parameters:
      density: 0.6
      weight: 0.3
merge_method: dare_ties
base_model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
parameters:
  int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "cstr/Spaetzle-v12-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```