File size: 7,462 Bytes
1b9a505 cceedc4 1b9a505 f4c2a23 1b9a505 e86e51d de8f831 68446c6 1b9a505 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
---
tags:
- merge
- mergekit
- lazymergekit
- flemmingmiguel/NeuDist-Ro-7B
- Blizado/discolm-mfto-7b-german-v0.1
- ResplendentAI/Flora_DPO_7B
base_model:
- flemmingmiguel/NeuDist-Ro-7B
- Blizado/discolm-mfto-7b-german-v0.1
- ResplendentAI/Flora_DPO_7B
license: cc-by-sa-4.0
---
# Spaetzle-v12-7b
Spaetzle-v12-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [flemmingmiguel/NeuDist-Ro-7B](https://huggingface.co/flemmingmiguel/NeuDist-Ro-7B)
* [Blizado/discolm-mfto-7b-german-v0.1](https://huggingface.co/Blizado/discolm-mfto-7b-german-v0.1)
* [ResplendentAI/Flora_DPO_7B](https://huggingface.co/ResplendentAI/Flora_DPO_7B)
* on the basis of [mayflowergmbh/Wiedervereinigung-7b-dpo-laser](https://huggingface.co/mayflowergmbh/Wiedervereinigung-7b-dpo-laser)
As expected, this is a little bit worse in general English tasks over [cstr/spaetzle-v8-7b](https://huggingface.co/cstr/spaetzle-v8-7b), but a tiny little bit better on German tasks, at least some: e.g. it reaches an EQ-Bench (de)
score of 64.81, but only
| Metric |Value|
|---------------------------------|----:|
|Avg. |69.36|
|AI2 Reasoning Challenge (25-Shot)|65.96|
|HellaSwag (10-Shot) |86.16|
|MMLU (5-Shot) |63.48|
|TruthfulQA (0-shot) |57.84|
|Winogrande (5-shot) |80.03|
|GSM8k (5-shot) |62.70|
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|--------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[Spaetzle-v12-7b](https://huggingface.co/cstr/Spaetzle-v12-7b)| 42.64| 74.3| 58.44| 44.44| 54.95|
### AGIEval
| Task |Version| Metric |Value| |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat | 0|acc |24.02|± | 2.69|
| | |acc_norm|21.65|± | 2.59|
|agieval_logiqa_en | 0|acc |36.10|± | 1.88|
| | |acc_norm|37.63|± | 1.90|
|agieval_lsat_ar | 0|acc |24.35|± | 2.84|
| | |acc_norm|23.04|± | 2.78|
|agieval_lsat_lr | 0|acc |48.82|± | 2.22|
| | |acc_norm|47.25|± | 2.21|
|agieval_lsat_rc | 0|acc |60.59|± | 2.98|
| | |acc_norm|57.99|± | 3.01|
|agieval_sat_en | 0|acc |76.21|± | 2.97|
| | |acc_norm|74.76|± | 3.03|
|agieval_sat_en_without_passage| 0|acc |46.60|± | 3.48|
| | |acc_norm|45.63|± | 3.48|
|agieval_sat_math | 0|acc |37.27|± | 3.27|
| | |acc_norm|33.18|± | 3.18|
Average: 42.64%
### GPT4All
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |59.13|± | 1.44|
| | |acc_norm|61.26|± | 1.42|
|arc_easy | 0|acc |83.67|± | 0.76|
| | |acc_norm|80.89|± | 0.81|
|boolq | 1|acc |87.83|± | 0.57|
|hellaswag | 0|acc |66.45|± | 0.47|
| | |acc_norm|84.63|± | 0.36|
|openbookqa | 0|acc |37.40|± | 2.17|
| | |acc_norm|45.80|± | 2.23|
|piqa | 0|acc |82.15|± | 0.89|
| | |acc_norm|83.13|± | 0.87|
|winogrande | 0|acc |76.56|± | 1.19|
Average: 74.3%
### TruthfulQA
| Task |Version|Metric|Value| |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc| 1|mc1 |42.59|± | 1.73|
| | |mc2 |58.44|± | 1.58|
Average: 58.44%
### Bigbench
| Task |Version| Metric |Value| |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|55.26|± | 3.62|
|bigbench_date_understanding | 0|multiple_choice_grade|64.77|± | 2.49|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|37.60|± | 3.02|
|bigbench_geometric_shapes | 0|multiple_choice_grade|32.31|± | 2.47|
| | |exact_str_match |21.45|± | 2.17|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|31.00|± | 2.07|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|22.43|± | 1.58|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|53.00|± | 2.89|
|bigbench_movie_recommendation | 0|multiple_choice_grade|40.40|± | 2.20|
|bigbench_navigate | 0|multiple_choice_grade|51.30|± | 1.58|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|68.50|± | 1.04|
|bigbench_ruin_names | 0|multiple_choice_grade|48.66|± | 2.36|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|30.36|± | 1.46|
|bigbench_snarks | 0|multiple_choice_grade|70.17|± | 3.41|
|bigbench_sports_understanding | 0|multiple_choice_grade|70.39|± | 1.45|
|bigbench_temporal_sequences | 0|multiple_choice_grade|31.00|± | 1.46|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|21.44|± | 1.16|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|18.29|± | 0.92|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|53.00|± | 2.89|
Average: 44.44%
Average score: 54.95%
Elapsed time: 02:50:51
## 🧩 Configuration
```yaml
models:
- model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
# no parameters necessary for base model
- model: flemmingmiguel/NeuDist-Ro-7B
parameters:
density: 0.60
weight: 0.30
- model: Blizado/discolm-mfto-7b-german-v0.1
parameters:
density: 0.65
weight: 0.40
- model: ResplendentAI/Flora_DPO_7B
parameters:
density: 0.6
weight: 0.3
merge_method: dare_ties
base_model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "cstr/Spaetzle-v12-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |