--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - swagen metrics: - wer model-index: - name: whisper-medium-swagen-male-model-test results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: swagen type: swagen metrics: - name: Wer type: wer value: 0.3229230455194938 --- # whisper-medium-swagen-male-model-test This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the swagen dataset. It achieves the following results on the evaluation set: - Loss: 0.5615 - Wer: 0.3229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 2.7031 | 0.4840 | 200 | 0.7854 | 0.5021 | | 2.0469 | 0.9679 | 400 | 0.6388 | 0.3989 | | 1.0941 | 1.4501 | 600 | 0.5956 | 0.3358 | | 1.0543 | 1.9341 | 800 | 0.5615 | 0.3229 | | 0.4611 | 2.4162 | 1000 | 0.5803 | 0.3070 | | 0.5304 | 2.9002 | 1200 | 0.5714 | 0.3460 | | 0.2124 | 3.3823 | 1400 | 0.6000 | 0.2872 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0