--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - bigcgen metrics: - wer model-index: - name: whisper-medium-bigcgen-female-5hrs-62 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: bigcgen type: bigcgen metrics: - name: Wer type: wer value: 0.548921679909194 --- # whisper-medium-bigcgen-female-5hrs-62 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the bigcgen dataset. It achieves the following results on the evaluation set: - Loss: 0.7278 - Wer: 0.5489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 62 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.0539 | 0.5984 | 200 | 1.0387 | 0.6708 | | 0.7105 | 1.1945 | 400 | 0.8432 | 0.5764 | | 0.6344 | 1.7928 | 600 | 0.7586 | 0.5600 | | 0.5221 | 2.3889 | 800 | 0.7457 | 0.5623 | | 0.4151 | 2.9873 | 1000 | 0.7278 | 0.5489 | | 0.219 | 3.5834 | 1200 | 0.7980 | 0.5287 | | 0.1226 | 4.1795 | 1400 | 0.8193 | 0.5362 | | 0.1245 | 4.7779 | 1600 | 0.8030 | 0.4976 | | 0.0529 | 5.3740 | 1800 | 0.8765 | 0.4963 | ### Framework versions - Transformers 4.53.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.0