File size: 2,372 Bytes
54d79f7 e4bdf53 54d79f7 e4bdf53 54d79f7 e4bdf53 54d79f7 e4bdf53 54d79f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- bigcgen
metrics:
- wer
model-index:
- name: whisper-medium-bigcgen-female-5hrs-62
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: bigcgen
type: bigcgen
metrics:
- name: Wer
type: wer
value: 0.548921679909194
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-medium-bigcgen-female-5hrs-62
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the bigcgen dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7278
- Wer: 0.5489
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 62
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 1.0539 | 0.5984 | 200 | 1.0387 | 0.6708 |
| 0.7105 | 1.1945 | 400 | 0.8432 | 0.5764 |
| 0.6344 | 1.7928 | 600 | 0.7586 | 0.5600 |
| 0.5221 | 2.3889 | 800 | 0.7457 | 0.5623 |
| 0.4151 | 2.9873 | 1000 | 0.7278 | 0.5489 |
| 0.219 | 3.5834 | 1200 | 0.7980 | 0.5287 |
| 0.1226 | 4.1795 | 1400 | 0.8193 | 0.5362 |
| 0.1245 | 4.7779 | 1600 | 0.8030 | 0.4976 |
| 0.0529 | 5.3740 | 1800 | 0.8765 | 0.4963 |
### Framework versions
- Transformers 4.53.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.0
|