--- library_name: transformers tags: - Uncensored - Abliterated - Cubed Reasoning - QwQ-32B - reasoning - thinking - r1 - cot - deepseek - Qwen2.5 - Hermes - DeepHermes - DeepSeek - DeepSeek-R1-Distill - 128k context - not-for-all-audiences - merge - mlx - mlx-my-repo base_model: DavidAU/Qwen2.5-QwQ-37B-Eureka-Triple-Cubed-abliterated-uncensored --- # cs2764/Qwen2.5-QwQ-37B-Eureka-Triple-Cubed-abliterated-uncensored-mlx-4Bit The Model [cs2764/Qwen2.5-QwQ-37B-Eureka-Triple-Cubed-abliterated-uncensored-mlx-4Bit](https://huggingface.co/cs2764/Qwen2.5-QwQ-37B-Eureka-Triple-Cubed-abliterated-uncensored-mlx-4Bit) was converted to MLX format from [DavidAU/Qwen2.5-QwQ-37B-Eureka-Triple-Cubed-abliterated-uncensored](https://huggingface.co/DavidAU/Qwen2.5-QwQ-37B-Eureka-Triple-Cubed-abliterated-uncensored) using mlx-lm version **0.22.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("cs2764/Qwen2.5-QwQ-37B-Eureka-Triple-Cubed-abliterated-uncensored-mlx-4Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```