crpatel commited on
Commit
1c9afb2
·
verified ·
1 Parent(s): 5b9461f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -166
README.md CHANGED
@@ -1,199 +1,105 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
  ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
 
 
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
 
156
 
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
 
167
  #### Software
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168
 
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
+ # Model Card for crpatel/mistral_prompt_tuning_tweet_classifier
 
 
 
 
 
 
 
 
 
2
 
3
  ## Model Details
4
 
5
  ### Model Description
6
+ This model is a fine-tuned version of Mistral, specifically trained for classifying tweets as complaints or non-complaints. The fine-tuning has been done using PEFT (Parameter-Efficient Fine-Tuning) and prompt tuning techniques. The model leverages the "ought/raft" dataset, specifically the "twitter_complaints" subset.
7
 
8
+ - **Developed by:** crpatel
9
+ - **Shared by [optional]:** crpatel
10
+ - **Model type:** Causal Language Model (Fine-tuned with PEFT)
11
+ - **Language(s) (NLP):** English
12
+ - **License:** Apache 2.0
13
+ - **Finetuned from model:** Mistral
14
+ - **Base Model Credit:** The base model, Mistral, was developed by [Mistral AI](https://mistral.ai/).
15
 
16
+ ### Model Sources
17
+ - **Repository:** [Hugging Face Model Hub](https://huggingface.co/crpatel/mistral_prompt_tuning_tweet_classifier)
18
+ - **Dataset:** [RAFT - Twitter Complaints](https://huggingface.co/datasets/ought/raft)
19
+ - **Base Model:** [Mistral AI](https://mistral.ai/)
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  ## Uses
22
 
 
 
23
  ### Direct Use
24
+ This model can be used for classifying tweets as complaints or non-complaints, which can be useful for customer service automation, sentiment analysis, and social media monitoring.
25
 
26
+ ### Downstream Use
27
+ The model can be fine-tuned further for other social media classification tasks or sentiment analysis applications in customer support systems.
 
 
 
 
 
 
 
28
 
29
  ### Out-of-Scope Use
30
+ This model is not designed for general sentiment analysis outside of complaint detection. Misuse for legal or high-stakes decision-making without validation is discouraged.
 
 
 
31
 
32
  ## Bias, Risks, and Limitations
33
 
 
 
 
 
34
  ### Recommendations
35
+ - The model should be evaluated for biases before deployment.
36
+ - Users should verify results against human-labeled datasets.
37
+ - The model may not generalize well to tweets outside the training distribution.
 
38
 
39
  ## How to Get Started with the Model
40
 
41
+ ```python
42
+ from peft import PeftModel, PeftConfig
43
+ from transformers import AutoModelForCausalLM, AutoTokenizer
44
+ from datasets import load_dataset
45
+ import torch
46
 
47
+ dataset = load_dataset("ought/raft", "twitter_complaints")
48
+ peft_model_id = "crpatel/mistral_prompt_tuning_tweet_classifier"
49
+ device = "cuda" if torch.cuda.is_available() else "cpu"
50
+ text_column = "Tweet text"
51
+ label_column = "text_label"
52
+
53
+ config = PeftConfig.from_pretrained(peft_model_id)
54
+ model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, torch_dtype=torch.float16).to(device)
55
+ model = PeftModel.from_pretrained(model, peft_model_id)
56
+ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
57
+ ```
58
 
59
  ## Training Details
60
 
61
  ### Training Data
62
+ - **Dataset:** Ought/RAFT - Twitter Complaints
63
+ - **Preprocessing:** Tokenization with AutoTokenizer
64
+ - **Filtering:** Preprocessing steps included lowercasing and cleaning tweet text
 
65
 
66
  ### Training Procedure
67
+ - **Optimization Algorithm:** AdamW
68
+ - **Precision:** FP16 for memory efficiency
69
+ - **Batch Size:** 16
70
+ - **Learning Rate:** 5e-5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
  ### Model Architecture and Objective
73
+ The model is based on Mistral and fine-tuned using PEFT to optimize efficiency in tweet classification.
74
 
 
 
 
 
 
 
 
 
 
75
 
76
  #### Software
77
+ - **Transformers Library:** 🤗 Transformers
78
+ - **Training Framework:** PyTorch
79
+ - **Fine-Tuning:** PEFT (Parameter-Efficient Fine-Tuning)
80
+
81
+ ## Citation
82
+ If you use this model, please cite:
83
+
84
+ ```bibtex
85
+ @article{crpatel2024,
86
+ author = {C.R. Patel},
87
+ title = {Mistral Prompt Tuning Tweet Classifier},
88
+ year = {2024},
89
+ publisher = {Hugging Face},
90
+ journal = {Hugging Face Model Hub}
91
+ }
92
+ ```
93
+
94
+ Additionally, credit the base model:
95
+
96
+ ```bibtex
97
+ @article{mistral2023,
98
+ author = {Mistral AI},
99
+ title = {Mistral Language Model},
100
+ year = {2023},
101
+ publisher = {Mistral AI},
102
+ journal = {Mistral AI Model Hub}
103
+ }
104
+ ```
105