--- library_name: transformers base_model: raulgdp/xml-roberta-large-finetuned-ner tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: NER-finetuning-XMLR-CM-V1 results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.9336523819882532 - name: Recall type: recall value: 0.9595349877040018 - name: F1 type: f1 value: 0.9464167585446528 - name: Accuracy type: accuracy value: 0.9819591471596839 --- # NER-finetuning-XMLR-CM-V1 This model is a fine-tuned version of [raulgdp/xml-roberta-large-finetuned-ner](https://huggingface.co/raulgdp/xml-roberta-large-finetuned-ner) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.0849 - Precision: 0.9337 - Recall: 0.9595 - F1: 0.9464 - Accuracy: 0.9820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2697 | 1.0 | 612 | 0.0995 | 0.9022 | 0.9392 | 0.9203 | 0.9726 | | 0.0954 | 2.0 | 1224 | 0.0909 | 0.9171 | 0.9586 | 0.9374 | 0.9778 | | 0.0661 | 3.0 | 1836 | 0.0789 | 0.9337 | 0.9581 | 0.9457 | 0.9816 | | 0.0533 | 4.0 | 2448 | 0.0853 | 0.9317 | 0.9594 | 0.9454 | 0.9811 | | 0.035 | 5.0 | 3060 | 0.0849 | 0.9337 | 0.9595 | 0.9464 | 0.9820 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1