--- library_name: transformers license: cc-by-4.0 base_model: NazaGara/NER-fine-tuned-BETO tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: NER-finetuning-BETO-CM-V1 results: - task: type: token-classification name: Token Classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - type: precision value: 0.949653802801782 name: Precision - type: recall value: 0.9613670941099761 name: Recall - type: f1 value: 0.9554745511003105 name: F1 - type: accuracy value: 0.976855614973262 name: Accuracy pipeline_tag: token-classification --- # NER-finetuning-BETO-CM-V1 This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.1236 - Precision: 0.9497 - Recall: 0.9614 - F1: 0.9555 - Accuracy: 0.9769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3411 | 1.0 | 612 | 0.1137 | 0.9437 | 0.9474 | 0.9456 | 0.9707 | | 0.1072 | 2.0 | 1224 | 0.1090 | 0.9304 | 0.9685 | 0.9491 | 0.9727 | | 0.0757 | 3.0 | 1836 | 0.1024 | 0.9450 | 0.9692 | 0.9569 | 0.9768 | | 0.0589 | 4.0 | 2448 | 0.1050 | 0.9492 | 0.9666 | 0.9578 | 0.9774 | | 0.0419 | 5.0 | 3060 | 0.1054 | 0.9498 | 0.9621 | 0.9559 | 0.9771 | | 0.0365 | 6.0 | 3672 | 0.1124 | 0.9460 | 0.9583 | 0.9521 | 0.9753 | | 0.0299 | 7.0 | 4284 | 0.1119 | 0.9495 | 0.9632 | 0.9563 | 0.9774 | | 0.0282 | 8.0 | 4896 | 0.1187 | 0.9482 | 0.9625 | 0.9553 | 0.9771 | | 0.0221 | 9.0 | 5508 | 0.1203 | 0.9496 | 0.9608 | 0.9551 | 0.9768 | | 0.0192 | 10.0 | 6120 | 0.1236 | 0.9497 | 0.9614 | 0.9555 | 0.9769 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3