cristianmanosalva commited on
Commit
6ba5a63
·
verified ·
1 Parent(s): b3fbaa5

End of training

Browse files
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: cc-by-4.0
4
+ base_model: NazaGara/NER-fine-tuned-BETO
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - biobert_json
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ - accuracy
14
+ model-index:
15
+ - name: NER-finetuning-BETO-CM-V1
16
+ results:
17
+ - task:
18
+ name: Token Classification
19
+ type: token-classification
20
+ dataset:
21
+ name: biobert_json
22
+ type: biobert_json
23
+ config: Biobert_json
24
+ split: validation
25
+ args: Biobert_json
26
+ metrics:
27
+ - name: Precision
28
+ type: precision
29
+ value: 0.949653802801782
30
+ - name: Recall
31
+ type: recall
32
+ value: 0.9613670941099761
33
+ - name: F1
34
+ type: f1
35
+ value: 0.9554745511003105
36
+ - name: Accuracy
37
+ type: accuracy
38
+ value: 0.976855614973262
39
+ ---
40
+
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # NER-finetuning-BETO-CM-V1
45
+
46
+ This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the biobert_json dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 0.1236
49
+ - Precision: 0.9497
50
+ - Recall: 0.9614
51
+ - F1: 0.9555
52
+ - Accuracy: 0.9769
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 2e-05
72
+ - train_batch_size: 16
73
+ - eval_batch_size: 16
74
+ - seed: 42
75
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
76
+ - lr_scheduler_type: linear
77
+ - num_epochs: 10
78
+
79
+ ### Training results
80
+
81
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | 0.3411 | 1.0 | 612 | 0.1137 | 0.9437 | 0.9474 | 0.9456 | 0.9707 |
84
+ | 0.1072 | 2.0 | 1224 | 0.1090 | 0.9304 | 0.9685 | 0.9491 | 0.9727 |
85
+ | 0.0757 | 3.0 | 1836 | 0.1024 | 0.9450 | 0.9692 | 0.9569 | 0.9768 |
86
+ | 0.0589 | 4.0 | 2448 | 0.1050 | 0.9492 | 0.9666 | 0.9578 | 0.9774 |
87
+ | 0.0419 | 5.0 | 3060 | 0.1054 | 0.9498 | 0.9621 | 0.9559 | 0.9771 |
88
+ | 0.0365 | 6.0 | 3672 | 0.1124 | 0.9460 | 0.9583 | 0.9521 | 0.9753 |
89
+ | 0.0299 | 7.0 | 4284 | 0.1119 | 0.9495 | 0.9632 | 0.9563 | 0.9774 |
90
+ | 0.0282 | 8.0 | 4896 | 0.1187 | 0.9482 | 0.9625 | 0.9553 | 0.9771 |
91
+ | 0.0221 | 9.0 | 5508 | 0.1203 | 0.9496 | 0.9608 | 0.9551 | 0.9768 |
92
+ | 0.0192 | 10.0 | 6120 | 0.1236 | 0.9497 | 0.9614 | 0.9555 | 0.9769 |
93
+
94
+
95
+ ### Framework versions
96
+
97
+ - Transformers 4.46.2
98
+ - Pytorch 2.5.1+cu121
99
+ - Datasets 3.1.0
100
+ - Tokenizers 0.20.3
runs/Nov19_02-32-47_07e61589da2f/events.out.tfevents.1731984160.07e61589da2f.1211.1 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c226cf384dbe6560f73332800559228a6fb532c5d4ba670f110a22ed31de97d9
3
- size 13318
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8e46dbe0048257c108dfd61a309667e66c14d81bad078b3e5d50ee70418cfb2
3
+ size 14144