cpheemagazine commited on
Commit
23813b3
·
verified ·
1 Parent(s): 04a87c0

End of training

Browse files
Files changed (1) hide show
  1. README.md +132 -0
README.md ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: other
4
+ base_model: sethuiyer/Medichat-Llama3-8B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: da8d1c0c-0f9d-46fa-9f3b-305282ec3fd6
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.11.0.dev0`
20
+ ```yaml
21
+ adapter: lora
22
+ attn_implementation: eager
23
+ base_model: sethuiyer/Medichat-Llama3-8B
24
+ bf16: true
25
+ datasets:
26
+ - data_files:
27
+ - 39f6921607e7687d_train_data.json
28
+ ds_type: json
29
+ format: custom
30
+ path: /workspace/input_data/
31
+ type:
32
+ field_instruction: instruct
33
+ field_output: output
34
+ format: '{instruction}'
35
+ no_input_format: '{instruction}'
36
+ system_format: '{system}'
37
+ system_prompt: ''
38
+ eval_max_new_tokens: 128
39
+ evals_per_epoch: 4
40
+ flash_attention: false
41
+ fp16: false
42
+ gradient_accumulation_steps: 1
43
+ gradient_checkpointing: true
44
+ group_by_length: true
45
+ hf_upload_public: true
46
+ hf_upload_repo_type: model
47
+ hub_model_id: cpheemagazine/da8d1c0c-0f9d-46fa-9f3b-305282ec3fd6
48
+ learning_rate: 0.0002
49
+ load_in_4bit: false
50
+ logging_steps: 10
51
+ lora_alpha: 32
52
+ lora_dropout: 0.15
53
+ lora_fan_in_fan_out: null
54
+ lora_model_dir: null
55
+ lora_r: 32
56
+ lora_target_linear: true
57
+ loraplus_lr_embedding: 1.0e-06
58
+ loraplus_lr_ratio: 16
59
+ lr_scheduler: cosine
60
+ max_steps: 1425
61
+ micro_batch_size: 12
62
+ mlflow_experiment_name: /tmp/39f6921607e7687d_train_data.json
63
+ model_card: false
64
+ optimizer: adamw_torch_fused
65
+ output_dir: miner_id_24
66
+ push_to_hub: true
67
+ rl: null
68
+ sample_packing: true
69
+ save_steps: 213
70
+ sequence_len: 2048
71
+ tf32: true
72
+ tokenizer_type: AutoTokenizer
73
+ train_on_inputs: true
74
+ trl: null
75
+ trust_remote_code: false
76
+ use_flash_attention: false
77
+ wandb_name: 707f1577-8855-40c1-b3ed-a22e67489c62
78
+ wandb_project: Gradients-On-Demand
79
+ wandb_run: apriasmoro
80
+ wandb_runid: 707f1577-8855-40c1-b3ed-a22e67489c62
81
+ warmup_steps: 142
82
+ weight_decay: 0.02
83
+
84
+ ```
85
+
86
+ </details><br>
87
+
88
+ # da8d1c0c-0f9d-46fa-9f3b-305282ec3fd6
89
+
90
+ This model is a fine-tuned version of [sethuiyer/Medichat-Llama3-8B](https://huggingface.co/sethuiyer/Medichat-Llama3-8B) on an unknown dataset.
91
+
92
+ ## Model description
93
+
94
+ More information needed
95
+
96
+ ## Intended uses & limitations
97
+
98
+ More information needed
99
+
100
+ ## Training and evaluation data
101
+
102
+ More information needed
103
+
104
+ ## Training procedure
105
+
106
+ ### Training hyperparameters
107
+
108
+ The following hyperparameters were used during training:
109
+ - learning_rate: 0.0002
110
+ - train_batch_size: 12
111
+ - eval_batch_size: 12
112
+ - seed: 42
113
+ - distributed_type: multi-GPU
114
+ - num_devices: 4
115
+ - total_train_batch_size: 48
116
+ - total_eval_batch_size: 48
117
+ - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
118
+ - lr_scheduler_type: cosine
119
+ - lr_scheduler_warmup_steps: 142
120
+ - training_steps: 1425
121
+
122
+ ### Training results
123
+
124
+
125
+
126
+ ### Framework versions
127
+
128
+ - PEFT 0.15.2
129
+ - Transformers 4.53.1
130
+ - Pytorch 2.5.1+cu124
131
+ - Datasets 3.6.0
132
+ - Tokenizers 0.21.2