File size: 2,894 Bytes
f9a5b87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-1.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 3944d5cd-8236-424a-b93e-9d49250e4314
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.10.0.dev0`
```yaml
adapter: lora
base_model: Qwen/Qwen2.5-1.5B
bf16: true
datasets:
- data_files:
  - c8f334387c1e0ed5_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/
  type:
    field_instruction: instruct
    field_output: output
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
eval_max_new_tokens: 128
evals_per_epoch: 4
flash_attention: false
fp16: false
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: true
hf_upload_public: true
hf_upload_repo_type: model
hub_model_id: cpheemagazine/3944d5cd-8236-424a-b93e-9d49250e4314
learning_rate: 0.0002
load_in_4bit: false
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: false
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 874
micro_batch_size: 36
mlflow_experiment_name: /tmp/c8f334387c1e0ed5_train_data.json
optimizer: adamw_torch_fused
output_dir: miner_id_24
rl: null
sample_packing: true
save_steps: 131
sequence_len: 2048
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: true
trl: null
trust_remote_code: true
wandb_name: b91c504d-65c2-43bc-8b29-5e9c0920f259
wandb_project: Gradients-On-Demand
wandb_run: apriasmoro
wandb_runid: b91c504d-65c2-43bc-8b29-5e9c0920f259
warmup_steps: 87
weight_decay: 0.02

```

</details><br>

# 3944d5cd-8236-424a-b93e-9d49250e4314

This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on an unknown dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 36
- eval_batch_size: 36
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 87
- training_steps: 874

### Training results



### Framework versions

- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.5.1+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1