Commit
·
97d3997
1
Parent(s):
821d9e9
Test simple
Browse files- README.md +1 -1
- config.json +1 -1
- lunarLanderDQN1.zip +2 -2
- lunarLanderDQN1/data +17 -17
- lunarLanderDQN1/policy.optimizer.pth +1 -1
- lunarLanderDQN1/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -168.76 +/- 126.43
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9c1cb68160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9c1cb681f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9c1cb68280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9c1cb68310>", "_build": "<function ActorCriticPolicy._build at 0x7f9c1cb683a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9c1cb68430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9c1cb684c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9c1cb68550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9c1cb685e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9c1cb68670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9c1cb68700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9c1cb4ed80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 2000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671473976715281526, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAO1a4j6BCdK83reMP74QzL8p2pu/zi0KvwAAgD8AAAAAM2ecvJp6kj/Djf+8OwkjvwllT72+0A++AAAAAAAAAABAtJE9AlWPPwEYRT73Sy6/0n+XPfblQD4AAAAAAAAAAA0u9z6o+6s+45iJP/1gpL+ui3S/Be9uvgAAAAAAAAAALcwKvitNxT8VbgW/V8EYPoX9XzxWrRy+AAAAAAAAAACq8QU/xvWCP/ZtbD+C2G2/r6Qwv65QLr4AAAAAAAAAAHapEz/vhic/CPBrP8deeL8kGMy+7TcfvQAAAAAAAAAA5m8/vU2AqT8W7QS/3SAGv2Q26TzycE89AAAAAAAAAACA8QQ921QvP5PmGj1PfYm/NkoZPraUzDwAAAAAAAAAAPruUL7yFGE/dSP9vsNXdL+5pgQ+UtNvPQAAAAAAAAAAQ2iLvvYYAj08boK/Qwwfv4KXHL8GkeG/AACAPwAAAACAR5m9dh6jPwQEy72u5MW+CylFPahsYz0AAAAAAAAAAIB6WL1rJ3U/iZkbvgPdb7+n2y06DX04vAAAAAAAAAAAAPgcuyoruD+vZaW9ziHGPs+sMzsvOpQ8AAAAAAAAAADqgiI/LBDhPkWVmT9/y5W/9DJNv2GGSL4AAAAAAAAAAE1jLD0mD7o/tiwdPyOYSz4pn0q9m7oevgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -7.192, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5kAPte2BY8CUhpRSlIwBbJRLZYwBdJRHQDWi4H5aePJ1fZQoaAZoCWgPQwiMu0G0VohVwJSGlFKUaBVLVGgWR0A1pHhjvuw5dX2UKGgGaAloD0MIXi13ZgIDYcCUhpRSlGgVS2NoFkdANaa4MF2V3XV9lChoBmgJaA9DCADkhAmj9mfAlIaUUpRoFUtuaBZHQDWxrl/6O5t1fZQoaAZoCWgPQwgLCRhd3v1YwJSGlFKUaBVLSWgWR0A1tDYAbQ1KdX2UKGgGaAloD0MIVG8NbBXae8CUhpRSlGgVS1JoFkdANboy9EkSmXV9lChoBmgJaA9DCA0AVdx4KIDAlIaUUpRoFUttaBZHQDXCndfsu4B1fZQoaAZoCWgPQwh8YTJVMOdSwJSGlFKUaBVLQWgWR0A1xv7FbVz7dX2UKGgGaAloD0MI6Q5iZwocYsCUhpRSlGgVS1toFkdANcjPWxyGSXV9lChoBmgJaA9DCPQY5ZmXDVXAlIaUUpRoFUtFaBZHQDXKciGFi8Z1fZQoaAZoCWgPQwgpCYm0jVJUwJSGlFKUaBVLPGgWR0A1zDuBtk4FdX2UKGgGaAloD0MIYFYo0v25aMCUhpRSlGgVS4hoFkdANdDnRsuWbHV9lChoBmgJaA9DCJKyRdJuq1TAlIaUUpRoFUtFaBZHQDXQ9LYf4h51fZQoaAZoCWgPQwjus8pM6a5mwJSGlFKUaBVLSmgWR0A13hZha1TjdX2UKGgGaAloD0MIBmaFIt3IW8CUhpRSlGgVS2doFkdANe87MgU1ynV9lChoBmgJaA9DCE6AYfnzBVjAlIaUUpRoFUtraBZHQDXwO09hZyN1fZQoaAZoCWgPQwivITguY3VgwJSGlFKUaBVLVmgWR0A18FEy+HrRdX2UKGgGaAloD0MIBHCzeLG5XcCUhpRSlGgVS0RoFkdANfcXenAIp3V9lChoBmgJaA9DCGfUfJX8MnnAlIaUUpRoFUtdaBZHQDX8WP91loV1fZQoaAZoCWgPQwgSE9TwLYNiwJSGlFKUaBVLUGgWR0A1/hAGB4D+dX2UKGgGaAloD0MIA3egTvkFdsCUhpRSlGgVS2ZoFkdANgJz5oGpuXV9lChoBmgJaA9DCP/qcd9qolbAlIaUUpRoFUtjaBZHQDYMd8zAN5N1fZQoaAZoCWgPQwji5elcUR5jwJSGlFKUaBVLS2gWR0A2D6a9bor4dX2UKGgGaAloD0MIkPeqlQn0dMCUhpRSlGgVS01oFkdANhAdsBQvYnV9lChoBmgJaA9DCNdppKXy1GDAlIaUUpRoFUtUaBZHQDYeQXAM2FZ1fZQoaAZoCWgPQwgJ/yJoTMp3wJSGlFKUaBVLWGgWR0A2Iddmg8KYdX2UKGgGaAloD0MIvlDAdjD7acCUhpRSlGgVS2hoFkdANiGxD9fkWHV9lChoBmgJaA9DCI8c6QyM4lfAlIaUUpRoFUtjaBZHQDYnEuQIUrV1fZQoaAZoCWgPQwi7JqQ1Bmp1wJSGlFKUaBVLeGgWR0A2NeQdS2pidX2UKGgGaAloD0MIsIwN3Wwna8CUhpRSlGgVS1VoFkdANkEKRdQfp3V9lChoBmgJaA9DCEJ79fHQoG7AlIaUUpRoFUtwaBZHQDZH+CK77Kt1fZQoaAZoCWgPQwg8TWa8rVl/wJSGlFKUaBVLX2gWR0A2SvOQhfShdX2UKGgGaAloD0MIu9HHfMBEYsCUhpRSlGgVS11oFkdANlDArQPZqXV9lChoBmgJaA9DCMbDew4s1FvAlIaUUpRoFUtJaBZHQDZSp++dsi11fZQoaAZoCWgPQwhCtFa0+aFywJSGlFKUaBVLY2gWR0A2XJk5IYm+dX2UKGgGaAloD0MI9n8O82UxZ8CUhpRSlGgVS35oFkdANmwuM+/xlXV9lChoBmgJaA9DCEyndRuUHHDAlIaUUpRoFUtNaBZHQDZtGwzLwF11fZQoaAZoCWgPQwip91ROe15rwJSGlFKUaBVLc2gWR0A2bqlgtvn9dX2UKGgGaAloD0MISaEsfH1Sa8CUhpRSlGgVS21oFkdANntfG+9Jz3V9lChoBmgJaA9DCKAVGLI60nHAlIaUUpRoFUtyaBZHQDaAn3L3bmF1fZQoaAZoCWgPQwhihzHp7ylfwJSGlFKUaBVLTGgWR0A2g8Md92HMdX2UKGgGaAloD0MIBaInZVKaYcCUhpRSlGgVS2JoFkdANoTRplBhQXV9lChoBmgJaA9DCNSbUfNVxWDAlIaUUpRoFUtlaBZHQDaH8YQ8OkN1fZQoaAZoCWgPQwiIg4QoXxFYwJSGlFKUaBVLSmgWR0A2jI42jwhGdX2UKGgGaAloD0MImlyMgfX1asCUhpRSlGgVS5hoFkdANpZtvXK8tnV9lChoBmgJaA9DCBOc+kDy1VnAlIaUUpRoFUtzaBZHQDaaA+Y+jdp1fZQoaAZoCWgPQwidSDDVzMxTwJSGlFKUaBVLPGgWR0A2ptlqagEmdX2UKGgGaAloD0MIEmxc/64JY8CUhpRSlGgVS15oFkdANqh86V+qi3V9lChoBmgJaA9DCO4/Mh26pmHAlIaUUpRoFUtXaBZHQDaoezUqhDh1fZQoaAZoCWgPQwh/Z3v0hvVJwJSGlFKUaBVLQmgWR0A2q28IzFdcdX2UKGgGaAloD0MITN9rCI4gd8CUhpRSlGgVS19oFkdANq4/iYLLIXV9lChoBmgJaA9DCGXFcHWA1mbAlIaUUpRoFUt1aBZHQDa6fAbhm5F1fZQoaAZoCWgPQwgZjBGJQgxswJSGlFKUaBVLZmgWR0A2vPYFqzqsdX2UKGgGaAloD0MIbqXXZmNpSMCUhpRSlGgVS0hoFkdANr5vkzXSSnV9lChoBmgJaA9DCOs6VFOS1VXAlIaUUpRoFUtHaBZHQDbCJLuhK151fZQoaAZoCWgPQwgXvOgryLxjwJSGlFKUaBVLYmgWR0A2xzxwyZa3dX2UKGgGaAloD0MIJH7FGi5CXMCUhpRSlGgVS0xoFkdANsl9a2WpqHV9lChoBmgJaA9DCEomp3aG1G3AlIaUUpRoFUtVaBZHQDbSBVdX1ap1fZQoaAZoCWgPQwgYWwhyUDhXwJSGlFKUaBVLN2gWR0A22UKiO/+LdX2UKGgGaAloD0MI3L3cJ0cbYMCUhpRSlGgVS1JoFkdANuQaR6nivXV9lChoBmgJaA9DCH0lkBK7NGXAlIaUUpRoFUtoaBZHQDbmrq+rU9Z1fZQoaAZoCWgPQwjnj2ltGldGQJSGlFKUaBVLSGgWR0A26Df3vhIfdX2UKGgGaAloD0MIl3K+2LslcMCUhpRSlGgVS2hoFkdANuuFL39JjHV9lChoBmgJaA9DCClAFMyY/1nAlIaUUpRoFUtWaBZHQDb24FzMibF1fZQoaAZoCWgPQwgUIApmTCBZwJSGlFKUaBVLVGgWR0A2+APuogmrdX2UKGgGaAloD0MIMZqV7cMPYsCUhpRSlGgVS0FoFkdANvqJEYwZfnV9lChoBmgJaA9DCFdbsb9sK2DAlIaUUpRoFUtJaBZHQDcAgEEC/491fZQoaAZoCWgPQwgMIef9f5ZDwJSGlFKUaBVLeWgWR0A3BY3Ns3yadX2UKGgGaAloD0MItrqcEhAUYcCUhpRSlGgVS2poFkdANw78rI5o5HV9lChoBmgJaA9DCP34S4v6jVTAlIaUUpRoFUtEaBZHQDcRHTZxrBV1fZQoaAZoCWgPQwiuR+F6FD1swJSGlFKUaBVLYmgWR0A3FKTB68g7dX2UKGgGaAloD0MI9N4YAoBZVMCUhpRSlGgVS0NoFkdANxfOhTOxB3V9lChoBmgJaA9DCBXI7Cz6yWPAlIaUUpRoFUtjaBZHQDccw22oegd1fZQoaAZoCWgPQwg75dGNsF5bwJSGlFKUaBVLPmgWR0A3H8eCCjDbdX2UKGgGaAloD0MInDBhNCuvbsCUhpRSlGgVS0VoFkdANzd2Pkq+anV9lChoBmgJaA9DCMk7hzJUqF/AlIaUUpRoFUtYaBZHQDc61v2oNut1fZQoaAZoCWgPQwhPIVfqWdlgwJSGlFKUaBVLVWgWR0A3O4rSVnmJdX2UKGgGaAloD0MIMCk+PiEkUcCUhpRSlGgVS0xoFkdANz9kOI68x3V9lChoBmgJaA9DCPJDpRGzk3/AlIaUUpRoFUt/aBZHQDdAKv3ai9J1fZQoaAZoCWgPQwhN9s/TAL94wJSGlFKUaBVLhmgWR0A3REhJRO1wdX2UKGgGaAloD0MIxEKtaV47eMCUhpRSlGgVS19oFkdAN1J9y925hHV9lChoBmgJaA9DCPxW68TluAHAlIaUUpRoFUt8aBZHQDdYFC9h7Vt1fZQoaAZoCWgPQwgaGeQuAlR2wJSGlFKUaBVLWmgWR0A3ZQsPJ7swdX2UKGgGaAloD0MIVik900vOYMCUhpRSlGgVS2loFkdAN2mBSUC7snV9lChoBmgJaA9DCKn7AKS2b2PAlIaUUpRoFUtfaBZHQDdsuIyj59F1fZQoaAZoCWgPQwjByTZwBw5cwJSGlFKUaBVLOWgWR0A3bxd6cAindX2UKGgGaAloD0MIMC3qk9xlUcCUhpRSlGgVS0BoFkdAN3jtXxOLznV9lChoBmgJaA9DCO1l22nrHmbAlIaUUpRoFUuAaBZHQDd6ejEehf11fZQoaAZoCWgPQwicqKW5FTBIwJSGlFKUaBVLaGgWR0A3fHWz4UN8dX2UKGgGaAloD0MIwVJdwMvLXMCUhpRSlGgVS2NoFkdAN315B1LamHV9lChoBmgJaA9DCPhQoiWPxFrAlIaUUpRoFUtxaBZHQDeBhG6PKdR1fZQoaAZoCWgPQwhW9fI7Ta1YwJSGlFKUaBVLTmgWR0A3hynUDuBudX2UKGgGaAloD0MId6BOeXS3PcCUhpRSlGgVS3JoFkdAN48JIDoyK3V9lChoBmgJaA9DCHUF24gngUvAlIaUUpRoFUtAaBZHQDeXZFocrAh1fZQoaAZoCWgPQwi13JkJhvNKwJSGlFKUaBVLR2gWR0A3mFnZkCmudX2UKGgGaAloD0MIKnEd44qgW8CUhpRSlGgVS2FoFkdAN50jxCpm3HV9lChoBmgJaA9DCJ4mM97WnXTAlIaUUpRoFUtiaBZHQDeh/e+Eh7p1fZQoaAZoCWgPQwgls3qHm0t0wJSGlFKUaBVLd2gWR0A3sCqZML4OdX2UKGgGaAloD0MI6uxkcBSjccCUhpRSlGgVS01oFkdAN7HBpHqeLHV9lChoBmgJaA9DCPDeUWNCjVnAlIaUUpRoFUs9aBZHQDe1lDneSB91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc528c45040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc528c450d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc528c45160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc528c451f0>", "_build": "<function ActorCriticPolicy._build at 0x7fc528c45280>", "forward": "<function ActorCriticPolicy.forward at 0x7fc528c45310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc528c453a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc528c45430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc528c454c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc528c45550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc528c455e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc528c38d80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671474326890571072, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANbChb4mK4s/HVk7v/yAJr9ZBow+xTv3PQAAAAAAAAAARVM7vz4D3z2cczq/nru2v+0OBD41a909AAAAAAAAAAAWxD4/ynmLP75Mvz+/FS6/D/ZIv/KWT74AAAAAAAAAADN9pLwKh7I/Enf5vTFNOr73mKw9OhzpPQAAAAAAAAAAwBzYvYM/nD+xP8i99kswvxoEXr5aCDS+AAAAAAAAAABNvRk+1WCeP6Zuiz3nMQa//8YWP0jh2z4AAAAAAAAAANoj0z1VcjI+zm86Ptvsmb+EFpY8UhgxPgAAAAAAAAAAM5t1viM5lj899Qe/Ih4yv5ulAz9XpjM+AAAAAAAAAAAmeui98t+VP9TxKL/GMQK/VM9VPoJqmT4AAAAAAAAAAJocGr33caw/m/Qrvsabq74I4aY9k6eIPQAAAAAAAAAA7RsgvhCXTT8S0PS+7A6Ev9sjQT5zkXQ+AAAAAAAAAABmjws9uE+MP9N0Lj7Z1DO/Txe0vsIElb4AAAAAAAAAAB1+6j4b5hk/Okk9P9UNgb9CQqa91C0qPgAAAAAAAAAAGoSvvfTvuj5xqpS9sNayvyuIm74FP6W+AAAAAAAAAABAsyE/iiv+vT3ngT/yAbK/eQu4vhNtBr4AAAAAAAAAAIDvbL13BbU/E14Cv3cFy72UAnk9OuFOPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9NxCV2KoccCUhpRSlIwBbJRLZYwBdJRHQDUk7YChew91fZQoaAZoCWgPQwhzEHS0KjhiwJSGlFKUaBVLS2gWR0A1JytFKCg9dX2UKGgGaAloD0MIvma5bLQPdsCUhpRSlGgVS2ZoFkdANTVa8pTdcnV9lChoBmgJaA9DCFOVtrhG3m7AlIaUUpRoFUuAaBZHQDU38Muvllt1fZQoaAZoCWgPQwjqJFtdTq1cwJSGlFKUaBVLPWgWR0A1RjesPrfMdX2UKGgGaAloD0MIw9SWOkiNYMCUhpRSlGgVSz9oFkdANUwk5ZKWcHV9lChoBmgJaA9DCLdCWI0l0nDAlIaUUpRoFUtaaBZHQDVT5BTn7pF1fZQoaAZoCWgPQwiyoZv9gQRnwJSGlFKUaBVLTWgWR0A1WDNQj2SMdX2UKGgGaAloD0MIUyCzs+geYMCUhpRSlGgVS05oFkdANWDEehf0E3V9lChoBmgJaA9DCBsPtthtf23AlIaUUpRoFUtlaBZHQDViWX1J17p1fZQoaAZoCWgPQwhlUdhF0R1wwJSGlFKUaBVLa2gWR0A1ZjXWe6I4dX2UKGgGaAloD0MInP2BchssfsCUhpRSlGgVS3RoFkdANWY9xIatLnV9lChoBmgJaA9DCKlorP2dLWjAlIaUUpRoFUtLaBZHQDVsjt5UtI11fZQoaAZoCWgPQwjhm6bPTppzwJSGlFKUaBVLXmgWR0A1bQIUrTYvdX2UKGgGaAloD0MI+DQnLzLYVcCUhpRSlGgVS1VoFkdANXt6cAimmHV9lChoBmgJaA9DCMpS6/2GKnLAlIaUUpRoFUuFaBZHQDV7n+yZ8a51fZQoaAZoCWgPQwgAA0GADLFfwJSGlFKUaBVLTGgWR0A1fqqOtGNJdX2UKGgGaAloD0MII/PIHwymUcCUhpRSlGgVS3RoFkdANYFGgBcRlHV9lChoBmgJaA9DCDV5ymq6SljAlIaUUpRoFUs9aBZHQDWFtix3V091fZQoaAZoCWgPQwiI8ZpXdcJPwJSGlFKUaBVLUWgWR0A1iAmAskIHdX2UKGgGaAloD0MIQiYZOQvzasCUhpRSlGgVS21oFkdANY66vq1PWXV9lChoBmgJaA9DCP6arFEPPVjAlIaUUpRoFUs/aBZHQDWUAeaKDTV1fZQoaAZoCWgPQwj8AQ8MIEVhwJSGlFKUaBVLTmgWR0A1o2RaHKwIdX2UKGgGaAloD0MI0ZMyqaGFX8CUhpRSlGgVS0hoFkdANaum3vx6OnV9lChoBmgJaA9DCJCiztzDoWTAlIaUUpRoFUtsaBZHQDW0LpiZv1l1fZQoaAZoCWgPQwi1b+6vHjFuwJSGlFKUaBVLWmgWR0A1uIJqqOtGdX2UKGgGaAloD0MIlUbM7PO4cMCUhpRSlGgVS1doFkdANcBpHqeK9HV9lChoBmgJaA9DCN4hxQCJKFnAlIaUUpRoFUtiaBZHQDXF+/gzguR1fZQoaAZoCWgPQwjQ8GYNHsJywJSGlFKUaBVLTGgWR0A1x5jH4oJBdX2UKGgGaAloD0MIA+55/jR4aMCUhpRSlGgVS0hoFkdANceqebutwXV9lChoBmgJaA9DCDtUU5J1yl7AlIaUUpRoFUtqaBZHQDXJ78ejmCB1fZQoaAZoCWgPQwhens4VpeFXwJSGlFKUaBVLQmgWR0A1zSElE7W/dX2UKGgGaAloD0MILcxCOydudcCUhpRSlGgVS1ZoFkdANdUHpr1ui3V9lChoBmgJaA9DCOJZgoyAGW3AlIaUUpRoFUtqaBZHQDXy+L3sXzl1fZQoaAZoCWgPQwhTCU/o9TtSwJSGlFKUaBVLdmgWR0A19CgsbvPUdX2UKGgGaAloD0MI1gEQd/VUWsCUhpRSlGgVS0NoFkdANgHuJDVpbnV9lChoBmgJaA9DCAsOL4jIyWfAlIaUUpRoFUtZaBZHQDYOmdiDujR1fZQoaAZoCWgPQwiVfy2vnCdywJSGlFKUaBVLbGgWR0A2DoMKCxu9dX2UKGgGaAloD0MIAOSECaN2Y8CUhpRSlGgVSztoFkdANhDnA6+36XV9lChoBmgJaA9DCIP6ljndV2/AlIaUUpRoFUuAaBZHQDYUgLZzxPR1fZQoaAZoCWgPQwjECUyndfdRwJSGlFKUaBVLQWgWR0A2G1EVnEl3dX2UKGgGaAloD0MIYhOZucCCb8CUhpRSlGgVS0doFkdANiAgs9SuQ3V9lChoBmgJaA9DCGySH/Erli/AlIaUUpRoFUuXaBZHQDYgAaNuLrJ1fZQoaAZoCWgPQwgYzjXM0C1dwJSGlFKUaBVLSmgWR0A2IruYx+KCdX2UKGgGaAloD0MINbbXgt4tcMCUhpRSlGgVS1loFkdANiWIbfgrH3V9lChoBmgJaA9DCIdsIF1sDVjAlIaUUpRoFUtRaBZHQDZPFXJYDDF1fZQoaAZoCWgPQwjtZHCU/JdwwJSGlFKUaBVLdGgWR0A2V4hUzbeudX2UKGgGaAloD0MIBmhbzTqKZMCUhpRSlGgVS2JoFkdANlqyB06o2nV9lChoBmgJaA9DCDQTDOeafWfAlIaUUpRoFUtaaBZHQDZoKOT7l7t1fZQoaAZoCWgPQwiCdRw/1JR6wJSGlFKUaBVLfWgWR0A2cOc2BJ7LdX2UKGgGaAloD0MIlghU/yC4VcCUhpRSlGgVS0doFkdANnTaoMrmQ3V9lChoBmgJaA9DCMjvbfqzi1fAlIaUUpRoFUtraBZHQDZ41CPZIxx1fZQoaAZoCWgPQwhKz/QSY4dwwJSGlFKUaBVLXWgWR0A2hEEC/47BdX2UKGgGaAloD0MIKZXwhF7+YsCUhpRSlGgVS0toFkdANoWVNYbKinV9lChoBmgJaA9DCIMWEjA69GrAlIaUUpRoFUtIaBZHQDaHUONHYpV1fZQoaAZoCWgPQwhM3gAz3wJkwJSGlFKUaBVLX2gWR0A2hzl90A93dX2UKGgGaAloD0MIls/yPLhBYsCUhpRSlGgVS1JoFkdANpTfFaSs83V9lChoBmgJaA9DCEta8Q0FuWDAlIaUUpRoFUt0aBZHQDaWYD1XeWR1fZQoaAZoCWgPQwhgPe5bredXwJSGlFKUaBVLbWgWR0A2oWOIZZSvdX2UKGgGaAloD0MInZ0MjpLWU8CUhpRSlGgVS0RoFkdANqYuXeFcp3V9lChoBmgJaA9DCA9kPbW6BHDAlIaUUpRoFUtkaBZHQDavV8Ti84B1fZQoaAZoCWgPQwjopWJj3pxiwJSGlFKUaBVLa2gWR0A2skZaV2RrdX2UKGgGaAloD0MI7UeKyDBDcMCUhpRSlGgVSzpoFkdANs3t0FKTS3V9lChoBmgJaA9DCNnqckoAwXPAlIaUUpRoFUtjaBZHQDbPmp2ll9V1fZQoaAZoCWgPQwhU5uYb0cRiwJSGlFKUaBVLXWgWR0A2930PH1e0dX2UKGgGaAloD0MIjErqBDQGeMCUhpRSlGgVS3doFkdANvncUM5OrXV9lChoBmgJaA9DCHyb/uxHNWvAlIaUUpRoFUtqaBZHQDb7mYBvJil1fZQoaAZoCWgPQwhBDkqY6cx1wJSGlFKUaBVLUmgWR0A3ARlHz6JqdX2UKGgGaAloD0MIgQTFjzHva8CUhpRSlGgVS01oFkdANwVXeWOZLXV9lChoBmgJaA9DCNZSQNr/sFTAlIaUUpRoFUtVaBZHQDcFcmjTKDF1fZQoaAZoCWgPQwihoX+Ci9tcwJSGlFKUaBVLU2gWR0A3CzpHI6sAdX2UKGgGaAloD0MINJ9zt+spSMCUhpRSlGgVS0poFkdANwwJgLJCB3V9lChoBmgJaA9DCPbQPlbwVm7AlIaUUpRoFUtgaBZHQDcOCxu89Oh1fZQoaAZoCWgPQwiP+usVFkZ1wJSGlFKUaBVLbGgWR0A3DdAPd2xIdX2UKGgGaAloD0MIaQBvgQSQX8CUhpRSlGgVS1FoFkdANxX7Lt/nXHV9lChoBmgJaA9DCE0UIXU7aW7AlIaUUpRoFUtvaBZHQDcbjKgZjx11fZQoaAZoCWgPQwhbCHJQQlluwJSGlFKUaBVLaGgWR0A3IsGxD9fkdX2UKGgGaAloD0MIJEc6A6OoacCUhpRSlGgVS1ZoFkdANyegpSaVlnV9lChoBmgJaA9DCKu0xTU+9GHAlIaUUpRoFUtIaBZHQDc2BJ7LMcJ1fZQoaAZoCWgPQwjYSuguSUJywJSGlFKUaBVLdWgWR0A3Nenyd4FBdX2UKGgGaAloD0MIPxwkRHl4Z8CUhpRSlGgVS0poFkdANz95+pfhM3V9lChoBmgJaA9DCCAIkKGjq3fAlIaUUpRoFUtxaBZHQDc/UtqYZ2p1fZQoaAZoCWgPQwg2lNqLaP5YwJSGlFKUaBVLQ2gWR0A3Rf9P1tfpdX2UKGgGaAloD0MIgJpattb5VMCUhpRSlGgVS0hoFkdAN0idnTRYzXV9lChoBmgJaA9DCE/o9SfxZl7AlIaUUpRoFUtNaBZHQDdSR/3Fkx11fZQoaAZoCWgPQwhvtyQH7EtbwJSGlFKUaBVLRGgWR0A3U4dZJTVEdX2UKGgGaAloD0MI6+V3mkyJYMCUhpRSlGgVS1loFkdAN1U/B3zMA3V9lChoBmgJaA9DCPOv5ZXrN1DAlIaUUpRoFUtDaBZHQDdg4xUNrj51fZQoaAZoCWgPQwjOb5hokNVowJSGlFKUaBVLc2gWR0A3YcX3xnWbdX2UKGgGaAloD0MI9KPhlLmIW8CUhpRSlGgVS3FoFkdAN2GKIi1RcnV9lChoBmgJaA9DCN5Wem02Sl7AlIaUUpRoFUtxaBZHQDdqGdqcmSh1fZQoaAZoCWgPQwiKq8q+q4RiwJSGlFKUaBVLb2gWR0A3bqpLmITHdX2UKGgGaAloD0MIyF2EKcrSVMCUhpRSlGgVS0FoFkdAN3JjMFEApHV9lChoBmgJaA9DCAdCsoAJtW7AlIaUUpRoFUtBaBZHQDdyOq//Nqx1fZQoaAZoCWgPQwjIKM+8nD11wJSGlFKUaBVLbWgWR0A3fCgbp/wzdX2UKGgGaAloD0MIRga5izA5YsCUhpRSlGgVSztoFkdAN35DJEH+qHV9lChoBmgJaA9DCC5VaYvrnmPAlIaUUpRoFUs6aBZHQDeF5a/yoXN1fZQoaAZoCWgPQwiKyRtg5mx2wJSGlFKUaBVLcWgWR0A3jG47Rv3rdX2UKGgGaAloD0MIbAa4IFsHUMCUhpRSlGgVS0NoFkdAN4xYvFm4AnV9lChoBmgJaA9DCCE/G7nutWHAlIaUUpRoFUtWaBZHQDeTXqZ+hGp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunarLanderDQN1.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7176b921145166b80cb8e6918505a77feb3e40bb85b7b6ddd134d76f188afde9
|
3 |
+
size 147067
|
lunarLanderDQN1/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -43,11 +43,11 @@
|
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
"num_timesteps": 16384,
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,10 +66,10 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc528c45040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc528c450d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc528c45160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc528c451f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc528c45280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc528c45310>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc528c453a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc528c45430>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc528c454c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc528c45550>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc528c455e0>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fc528c38d80>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
"num_timesteps": 16384,
|
46 |
+
"_total_timesteps": 1000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1671474326890571072,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANbChb4mK4s/HVk7v/yAJr9ZBow+xTv3PQAAAAAAAAAARVM7vz4D3z2cczq/nru2v+0OBD41a909AAAAAAAAAAAWxD4/ynmLP75Mvz+/FS6/D/ZIv/KWT74AAAAAAAAAADN9pLwKh7I/Enf5vTFNOr73mKw9OhzpPQAAAAAAAAAAwBzYvYM/nD+xP8i99kswvxoEXr5aCDS+AAAAAAAAAABNvRk+1WCeP6Zuiz3nMQa//8YWP0jh2z4AAAAAAAAAANoj0z1VcjI+zm86Ptvsmb+EFpY8UhgxPgAAAAAAAAAAM5t1viM5lj899Qe/Ih4yv5ulAz9XpjM+AAAAAAAAAAAmeui98t+VP9TxKL/GMQK/VM9VPoJqmT4AAAAAAAAAAJocGr33caw/m/Qrvsabq74I4aY9k6eIPQAAAAAAAAAA7RsgvhCXTT8S0PS+7A6Ev9sjQT5zkXQ+AAAAAAAAAABmjws9uE+MP9N0Lj7Z1DO/Txe0vsIElb4AAAAAAAAAAB1+6j4b5hk/Okk9P9UNgb9CQqa91C0qPgAAAAAAAAAAGoSvvfTvuj5xqpS9sNayvyuIm74FP6W+AAAAAAAAAABAsyE/iiv+vT3ngT/yAbK/eQu4vhNtBr4AAAAAAAAAAIDvbL13BbU/E14Cv3cFy72UAnk9OuFOPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -15.384,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9NxCV2KoccCUhpRSlIwBbJRLZYwBdJRHQDUk7YChew91fZQoaAZoCWgPQwhzEHS0KjhiwJSGlFKUaBVLS2gWR0A1JytFKCg9dX2UKGgGaAloD0MIvma5bLQPdsCUhpRSlGgVS2ZoFkdANTVa8pTdcnV9lChoBmgJaA9DCFOVtrhG3m7AlIaUUpRoFUuAaBZHQDU38Muvllt1fZQoaAZoCWgPQwjqJFtdTq1cwJSGlFKUaBVLPWgWR0A1RjesPrfMdX2UKGgGaAloD0MIw9SWOkiNYMCUhpRSlGgVSz9oFkdANUwk5ZKWcHV9lChoBmgJaA9DCLdCWI0l0nDAlIaUUpRoFUtaaBZHQDVT5BTn7pF1fZQoaAZoCWgPQwiyoZv9gQRnwJSGlFKUaBVLTWgWR0A1WDNQj2SMdX2UKGgGaAloD0MIUyCzs+geYMCUhpRSlGgVS05oFkdANWDEehf0E3V9lChoBmgJaA9DCBsPtthtf23AlIaUUpRoFUtlaBZHQDViWX1J17p1fZQoaAZoCWgPQwhlUdhF0R1wwJSGlFKUaBVLa2gWR0A1ZjXWe6I4dX2UKGgGaAloD0MInP2BchssfsCUhpRSlGgVS3RoFkdANWY9xIatLnV9lChoBmgJaA9DCKlorP2dLWjAlIaUUpRoFUtLaBZHQDVsjt5UtI11fZQoaAZoCWgPQwjhm6bPTppzwJSGlFKUaBVLXmgWR0A1bQIUrTYvdX2UKGgGaAloD0MI+DQnLzLYVcCUhpRSlGgVS1VoFkdANXt6cAimmHV9lChoBmgJaA9DCMpS6/2GKnLAlIaUUpRoFUuFaBZHQDV7n+yZ8a51fZQoaAZoCWgPQwgAA0GADLFfwJSGlFKUaBVLTGgWR0A1fqqOtGNJdX2UKGgGaAloD0MII/PIHwymUcCUhpRSlGgVS3RoFkdANYFGgBcRlHV9lChoBmgJaA9DCDV5ymq6SljAlIaUUpRoFUs9aBZHQDWFtix3V091fZQoaAZoCWgPQwiI8ZpXdcJPwJSGlFKUaBVLUWgWR0A1iAmAskIHdX2UKGgGaAloD0MIQiYZOQvzasCUhpRSlGgVS21oFkdANY66vq1PWXV9lChoBmgJaA9DCP6arFEPPVjAlIaUUpRoFUs/aBZHQDWUAeaKDTV1fZQoaAZoCWgPQwj8AQ8MIEVhwJSGlFKUaBVLTmgWR0A1o2RaHKwIdX2UKGgGaAloD0MI0ZMyqaGFX8CUhpRSlGgVS0hoFkdANaum3vx6OnV9lChoBmgJaA9DCJCiztzDoWTAlIaUUpRoFUtsaBZHQDW0LpiZv1l1fZQoaAZoCWgPQwi1b+6vHjFuwJSGlFKUaBVLWmgWR0A1uIJqqOtGdX2UKGgGaAloD0MIlUbM7PO4cMCUhpRSlGgVS1doFkdANcBpHqeK9HV9lChoBmgJaA9DCN4hxQCJKFnAlIaUUpRoFUtiaBZHQDXF+/gzguR1fZQoaAZoCWgPQwjQ8GYNHsJywJSGlFKUaBVLTGgWR0A1x5jH4oJBdX2UKGgGaAloD0MIA+55/jR4aMCUhpRSlGgVS0hoFkdANceqebutwXV9lChoBmgJaA9DCDtUU5J1yl7AlIaUUpRoFUtqaBZHQDXJ78ejmCB1fZQoaAZoCWgPQwhens4VpeFXwJSGlFKUaBVLQmgWR0A1zSElE7W/dX2UKGgGaAloD0MILcxCOydudcCUhpRSlGgVS1ZoFkdANdUHpr1ui3V9lChoBmgJaA9DCOJZgoyAGW3AlIaUUpRoFUtqaBZHQDXy+L3sXzl1fZQoaAZoCWgPQwhTCU/o9TtSwJSGlFKUaBVLdmgWR0A19CgsbvPUdX2UKGgGaAloD0MI1gEQd/VUWsCUhpRSlGgVS0NoFkdANgHuJDVpbnV9lChoBmgJaA9DCAsOL4jIyWfAlIaUUpRoFUtZaBZHQDYOmdiDujR1fZQoaAZoCWgPQwiVfy2vnCdywJSGlFKUaBVLbGgWR0A2DoMKCxu9dX2UKGgGaAloD0MIAOSECaN2Y8CUhpRSlGgVSztoFkdANhDnA6+36XV9lChoBmgJaA9DCIP6ljndV2/AlIaUUpRoFUuAaBZHQDYUgLZzxPR1fZQoaAZoCWgPQwjECUyndfdRwJSGlFKUaBVLQWgWR0A2G1EVnEl3dX2UKGgGaAloD0MIYhOZucCCb8CUhpRSlGgVS0doFkdANiAgs9SuQ3V9lChoBmgJaA9DCGySH/Erli/AlIaUUpRoFUuXaBZHQDYgAaNuLrJ1fZQoaAZoCWgPQwgYzjXM0C1dwJSGlFKUaBVLSmgWR0A2IruYx+KCdX2UKGgGaAloD0MINbbXgt4tcMCUhpRSlGgVS1loFkdANiWIbfgrH3V9lChoBmgJaA9DCIdsIF1sDVjAlIaUUpRoFUtRaBZHQDZPFXJYDDF1fZQoaAZoCWgPQwjtZHCU/JdwwJSGlFKUaBVLdGgWR0A2V4hUzbeudX2UKGgGaAloD0MIBmhbzTqKZMCUhpRSlGgVS2JoFkdANlqyB06o2nV9lChoBmgJaA9DCDQTDOeafWfAlIaUUpRoFUtaaBZHQDZoKOT7l7t1fZQoaAZoCWgPQwiCdRw/1JR6wJSGlFKUaBVLfWgWR0A2cOc2BJ7LdX2UKGgGaAloD0MIlghU/yC4VcCUhpRSlGgVS0doFkdANnTaoMrmQ3V9lChoBmgJaA9DCMjvbfqzi1fAlIaUUpRoFUtraBZHQDZ41CPZIxx1fZQoaAZoCWgPQwhKz/QSY4dwwJSGlFKUaBVLXWgWR0A2hEEC/47BdX2UKGgGaAloD0MIKZXwhF7+YsCUhpRSlGgVS0toFkdANoWVNYbKinV9lChoBmgJaA9DCIMWEjA69GrAlIaUUpRoFUtIaBZHQDaHUONHYpV1fZQoaAZoCWgPQwhM3gAz3wJkwJSGlFKUaBVLX2gWR0A2hzl90A93dX2UKGgGaAloD0MIls/yPLhBYsCUhpRSlGgVS1JoFkdANpTfFaSs83V9lChoBmgJaA9DCEta8Q0FuWDAlIaUUpRoFUt0aBZHQDaWYD1XeWR1fZQoaAZoCWgPQwhgPe5bredXwJSGlFKUaBVLbWgWR0A2oWOIZZSvdX2UKGgGaAloD0MInZ0MjpLWU8CUhpRSlGgVS0RoFkdANqYuXeFcp3V9lChoBmgJaA9DCA9kPbW6BHDAlIaUUpRoFUtkaBZHQDavV8Ti84B1fZQoaAZoCWgPQwjopWJj3pxiwJSGlFKUaBVLa2gWR0A2skZaV2RrdX2UKGgGaAloD0MI7UeKyDBDcMCUhpRSlGgVSzpoFkdANs3t0FKTS3V9lChoBmgJaA9DCNnqckoAwXPAlIaUUpRoFUtjaBZHQDbPmp2ll9V1fZQoaAZoCWgPQwhU5uYb0cRiwJSGlFKUaBVLXWgWR0A2930PH1e0dX2UKGgGaAloD0MIjErqBDQGeMCUhpRSlGgVS3doFkdANvncUM5OrXV9lChoBmgJaA9DCHyb/uxHNWvAlIaUUpRoFUtqaBZHQDb7mYBvJil1fZQoaAZoCWgPQwhBDkqY6cx1wJSGlFKUaBVLUmgWR0A3ARlHz6JqdX2UKGgGaAloD0MIgQTFjzHva8CUhpRSlGgVS01oFkdANwVXeWOZLXV9lChoBmgJaA9DCNZSQNr/sFTAlIaUUpRoFUtVaBZHQDcFcmjTKDF1fZQoaAZoCWgPQwihoX+Ci9tcwJSGlFKUaBVLU2gWR0A3CzpHI6sAdX2UKGgGaAloD0MINJ9zt+spSMCUhpRSlGgVS0poFkdANwwJgLJCB3V9lChoBmgJaA9DCPbQPlbwVm7AlIaUUpRoFUtgaBZHQDcOCxu89Oh1fZQoaAZoCWgPQwiP+usVFkZ1wJSGlFKUaBVLbGgWR0A3DdAPd2xIdX2UKGgGaAloD0MIaQBvgQSQX8CUhpRSlGgVS1FoFkdANxX7Lt/nXHV9lChoBmgJaA9DCE0UIXU7aW7AlIaUUpRoFUtvaBZHQDcbjKgZjx11fZQoaAZoCWgPQwhbCHJQQlluwJSGlFKUaBVLaGgWR0A3IsGxD9fkdX2UKGgGaAloD0MIJEc6A6OoacCUhpRSlGgVS1ZoFkdANyegpSaVlnV9lChoBmgJaA9DCKu0xTU+9GHAlIaUUpRoFUtIaBZHQDc2BJ7LMcJ1fZQoaAZoCWgPQwjYSuguSUJywJSGlFKUaBVLdWgWR0A3Nenyd4FBdX2UKGgGaAloD0MIPxwkRHl4Z8CUhpRSlGgVS0poFkdANz95+pfhM3V9lChoBmgJaA9DCCAIkKGjq3fAlIaUUpRoFUtxaBZHQDc/UtqYZ2p1fZQoaAZoCWgPQwg2lNqLaP5YwJSGlFKUaBVLQ2gWR0A3Rf9P1tfpdX2UKGgGaAloD0MIgJpattb5VMCUhpRSlGgVS0hoFkdAN0idnTRYzXV9lChoBmgJaA9DCE/o9SfxZl7AlIaUUpRoFUtNaBZHQDdSR/3Fkx11fZQoaAZoCWgPQwhvtyQH7EtbwJSGlFKUaBVLRGgWR0A3U4dZJTVEdX2UKGgGaAloD0MI6+V3mkyJYMCUhpRSlGgVS1loFkdAN1U/B3zMA3V9lChoBmgJaA9DCPOv5ZXrN1DAlIaUUpRoFUtDaBZHQDdg4xUNrj51fZQoaAZoCWgPQwjOb5hokNVowJSGlFKUaBVLc2gWR0A3YcX3xnWbdX2UKGgGaAloD0MI9KPhlLmIW8CUhpRSlGgVS3FoFkdAN2GKIi1RcnV9lChoBmgJaA9DCN5Wem02Sl7AlIaUUpRoFUtxaBZHQDdqGdqcmSh1fZQoaAZoCWgPQwiKq8q+q4RiwJSGlFKUaBVLb2gWR0A3bqpLmITHdX2UKGgGaAloD0MIyF2EKcrSVMCUhpRSlGgVS0FoFkdAN3JjMFEApHV9lChoBmgJaA9DCAdCsoAJtW7AlIaUUpRoFUtBaBZHQDdyOq//Nqx1fZQoaAZoCWgPQwjIKM+8nD11wJSGlFKUaBVLbWgWR0A3fCgbp/wzdX2UKGgGaAloD0MIRga5izA5YsCUhpRSlGgVSztoFkdAN35DJEH+qHV9lChoBmgJaA9DCC5VaYvrnmPAlIaUUpRoFUs6aBZHQDeF5a/yoXN1fZQoaAZoCWgPQwiKyRtg5mx2wJSGlFKUaBVLcWgWR0A3jG47Rv3rdX2UKGgGaAloD0MIbAa4IFsHUMCUhpRSlGgVS0NoFkdAN4xYvFm4AnV9lChoBmgJaA9DCCE/G7nutWHAlIaUUpRoFUtWaBZHQDeTXqZ+hGp1ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
lunarLanderDQN1/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:067e943c1107cd00f39dc0ed34da856a4c8843a2fea3c9b7088c379ffa7f111b
|
3 |
size 87929
|
lunarLanderDQN1/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6449ce94cbb7e5c449ba9709c54be44e9385fef29b50153f87ce8a557967bd10
|
3 |
size 43201
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -168.76142595062265, "std_reward": 126.43353749202684, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-19T18:26:32.034707"}
|