Corentin Meyer commited on
Commit
3840afc
·
1 Parent(s): a00d8e9

Working towards Keras 3 Model

Browse files
.python-version ADDED
@@ -0,0 +1 @@
 
 
1
+ 3.12
README.md CHANGED
@@ -35,6 +35,8 @@ model-index:
35
  name: Test Accuracy # Optional. Example: Test WER
36
  ---
37
 
 
 
38
  ## Model description
39
 
40
  <p align="center">
@@ -141,7 +143,7 @@ Test data results:
141
  With Tensorflow 2.10 and over:
142
 
143
  ```python
144
- model_sdh = keras.models.load_model("model.h5")
145
  ```
146
 
147
  With Tensorflow <2.10:
@@ -151,7 +153,7 @@ Then the model can easily be imported in Tensorflow/Keras using:
151
  ```python
152
  from .random_brightness import *
153
  model_sdh = keras.models.load_model(
154
- "model.h5", custom_objects={"RandomBrightness": RandomBrightness}
155
  )
156
  ```
157
 
 
35
  name: Test Accuracy # Optional. Example: Test WER
36
  ---
37
 
38
+ # TODO: UPDATE WITH LATEST INFO
39
+
40
  ## Model description
41
 
42
  <p align="center">
 
143
  With Tensorflow 2.10 and over:
144
 
145
  ```python
146
+ model_sdh = keras.models.load_model("model.keras")
147
  ```
148
 
149
  With Tensorflow <2.10:
 
153
  ```python
154
  from .random_brightness import *
155
  model_sdh = keras.models.load_model(
156
+ "model.keras", custom_objects={"RandomBrightness": RandomBrightness}
157
  )
158
  ```
159
 
main.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ def main():
2
+ print("Hello from myoquant-sdh-model!")
3
+
4
+
5
+ if __name__ == "__main__":
6
+ main()
myoquant-sdh-train.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
pyproject.toml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [project]
2
+ name = "myoquant-sdh-model"
3
+ version = "0.1.0"
4
+ description = "Add your description here"
5
+ readme = "README.md"
6
+ requires-python = ">=3.12"
7
+ dependencies = [
8
+ "datasets>=3.6.0",
9
+ "ipywidgets>=8.1.7",
10
+ "jupyter>=1.1.1",
11
+ "keras>=3.10.0",
12
+ "keras-cv>=0.9.0",
13
+ "keras-hub>=0.21.0",
14
+ "matplotlib>=3.10.3",
15
+ "notebook>=7.4.3",
16
+ "scikit-learn>=1.6.1",
17
+ "tensorflow>=2.19.0",
18
+ "tensorflow-metal>=1.2.0",
19
+ "wandb>=0.19.11",
20
+ ]
random_brightness.py DELETED
@@ -1,345 +0,0 @@
1
- # @title Random Brightness Layer
2
- import tensorflow as tf
3
- from keras import backend
4
- from keras.engine import base_layer
5
- from keras.engine import base_preprocessing_layer
6
- from keras.layers.preprocessing import preprocessing_utils as utils
7
- from keras.utils import tf_utils
8
-
9
- from tensorflow.python.ops import stateless_random_ops
10
- from tensorflow.python.util.tf_export import keras_export
11
- from tensorflow.tools.docs import doc_controls
12
-
13
-
14
- @keras_export("keras.__internal__.layers.BaseImageAugmentationLayer")
15
- class BaseImageAugmentationLayer(base_layer.BaseRandomLayer):
16
- """Abstract base layer for image augmentaion.
17
- This layer contains base functionalities for preprocessing layers which
18
- augment image related data, eg. image and in future, label and bounding boxes.
19
- The subclasses could avoid making certain mistakes and reduce code
20
- duplications.
21
- This layer requires you to implement one method: `augment_image()`, which
22
- augments one single image during the training. There are a few additional
23
- methods that you can implement for added functionality on the layer:
24
- `augment_label()`, which handles label augmentation if the layer supports
25
- that.
26
- `augment_bounding_box()`, which handles the bounding box augmentation, if the
27
- layer supports that.
28
- `get_random_transformation()`, which should produce a random transformation
29
- setting. The tranformation object, which could be any type, will be passed to
30
- `augment_image`, `augment_label` and `augment_bounding_box`, to coodinate
31
- the randomness behavior, eg, in the RandomFlip layer, the image and
32
- bounding_box should be changed in the same way.
33
- The `call()` method support two formats of inputs:
34
- 1. Single image tensor with 3D (HWC) or 4D (NHWC) format.
35
- 2. A dict of tensors with stable keys. The supported keys are:
36
- `"images"`, `"labels"` and `"bounding_boxes"` at the moment. We might add
37
- more keys in future when we support more types of augmentation.
38
- The output of the `call()` will be in two formats, which will be the same
39
- structure as the inputs.
40
- The `call()` will handle the logic detecting the training/inference
41
- mode, unpack the inputs, forward to the correct function, and pack the output
42
- back to the same structure as the inputs.
43
- By default the `call()` method leverages the `tf.vectorized_map()` function.
44
- Auto-vectorization can be disabled by setting `self.auto_vectorize = False`
45
- in your `__init__()` method. When disabled, `call()` instead relies
46
- on `tf.map_fn()`. For example:
47
- ```python
48
- class SubclassLayer(BaseImageAugmentationLayer):
49
- def __init__(self):
50
- super().__init__()
51
- self.auto_vectorize = False
52
- ```
53
- Example:
54
- ```python
55
- class RandomContrast(BaseImageAugmentationLayer):
56
- def __init__(self, factor=(0.5, 1.5), **kwargs):
57
- super().__init__(**kwargs)
58
- self._factor = factor
59
- def augment_image(self, image, transformation=None):
60
- random_factor = tf.random.uniform([], self._factor[0], self._factor[1])
61
- mean = tf.math.reduced_mean(inputs, axis=-1, keep_dim=True)
62
- return (inputs - mean) * random_factor + mean
63
- ```
64
- Note that since the randomness is also a common functionnality, this layer
65
- also includes a tf.keras.backend.RandomGenerator, which can be used to produce
66
- the random numbers. The random number generator is stored in the
67
- `self._random_generator` attribute.
68
- """
69
-
70
- def __init__(self, rate=1.0, seed=None, **kwargs):
71
- super().__init__(seed=seed, **kwargs)
72
- self.rate = rate
73
-
74
- @property
75
- def auto_vectorize(self):
76
- """Control whether automatic vectorization occurs.
77
- By default the `call()` method leverages the `tf.vectorized_map()` function.
78
- Auto-vectorization can be disabled by setting `self.auto_vectorize = False`
79
- in your `__init__()` method. When disabled, `call()` instead relies
80
- on `tf.map_fn()`. For example:
81
- ```python
82
- class SubclassLayer(BaseImageAugmentationLayer):
83
- def __init__(self):
84
- super().__init__()
85
- self.auto_vectorize = False
86
- ```
87
- """
88
- return getattr(self, "_auto_vectorize", True)
89
-
90
- @auto_vectorize.setter
91
- def auto_vectorize(self, auto_vectorize):
92
- self._auto_vectorize = auto_vectorize
93
-
94
- @property
95
- def _map_fn(self):
96
- if self.auto_vectorize:
97
- return tf.vectorized_map
98
- else:
99
- return tf.map_fn
100
-
101
- @doc_controls.for_subclass_implementers
102
- def augment_image(self, image, transformation=None):
103
- """Augment a single image during training.
104
- Args:
105
- image: 3D image input tensor to the layer. Forwarded from `layer.call()`.
106
- transformation: The transformation object produced by
107
- `get_random_transformation`. Used to coordinate the randomness between
108
- image, label and bounding box.
109
- Returns:
110
- output 3D tensor, which will be forward to `layer.call()`.
111
- """
112
- raise NotImplementedError()
113
-
114
- @doc_controls.for_subclass_implementers
115
- def augment_label(self, label, transformation=None):
116
- """Augment a single label during training.
117
- Args:
118
- label: 1D label to the layer. Forwarded from `layer.call()`.
119
- transformation: The transformation object produced by
120
- `get_random_transformation`. Used to coordinate the randomness between
121
- image, label and bounding box.
122
- Returns:
123
- output 1D tensor, which will be forward to `layer.call()`.
124
- """
125
- raise NotImplementedError()
126
-
127
- @doc_controls.for_subclass_implementers
128
- def augment_bounding_box(self, bounding_box, transformation=None):
129
- """Augment bounding boxes for one image during training.
130
- Args:
131
- bounding_box: 2D bounding boxes to the layer. Forwarded from `call()`.
132
- transformation: The transformation object produced by
133
- `get_random_transformation`. Used to coordinate the randomness between
134
- image, label and bounding box.
135
- Returns:
136
- output 2D tensor, which will be forward to `layer.call()`.
137
- """
138
- raise NotImplementedError()
139
-
140
- @doc_controls.for_subclass_implementers
141
- def get_random_transformation(self, image=None, label=None, bounding_box=None):
142
- """Produce random transformation config for one single input.
143
- This is used to produce same randomness between image/label/bounding_box.
144
- Args:
145
- image: 3D image tensor from inputs.
146
- label: optional 1D label tensor from inputs.
147
- bounding_box: optional 2D bounding boxes tensor from inputs.
148
- Returns:
149
- Any type of object, which will be forwarded to `augment_image`,
150
- `augment_label` and `augment_bounding_box` as the `transformation`
151
- parameter.
152
- """
153
- return None
154
-
155
- def call(self, inputs, training=True):
156
- inputs = self._ensure_inputs_are_compute_dtype(inputs)
157
- if training:
158
- inputs, is_dict = self._format_inputs(inputs)
159
- images = inputs["images"]
160
- if images.shape.rank == 3:
161
- return self._format_output(self._augment(inputs), is_dict)
162
- elif images.shape.rank == 4:
163
- return self._format_output(self._batch_augment(inputs), is_dict)
164
- else:
165
- raise ValueError(
166
- "Image augmentation layers are expecting inputs to be "
167
- "rank 3 (HWC) or 4D (NHWC) tensors. Got shape: "
168
- f"{images.shape}"
169
- )
170
- else:
171
- return inputs
172
-
173
- def _augment(self, inputs):
174
- image = inputs.get("images", None)
175
- label = inputs.get("labels", None)
176
- bounding_box = inputs.get("bounding_boxes", None)
177
- transformation = self.get_random_transformation(
178
- image=image, label=label, bounding_box=bounding_box
179
- ) # pylint: disable=assignment-from-none
180
- image = self.augment_image(image, transformation=transformation)
181
- result = {"images": image}
182
- if label is not None:
183
- label = self.augment_label(label, transformation=transformation)
184
- result["labels"] = label
185
- if bounding_box is not None:
186
- bounding_box = self.augment_bounding_box(
187
- bounding_box, transformation=transformation
188
- )
189
- result["bounding_boxes"] = bounding_box
190
- return result
191
-
192
- def _batch_augment(self, inputs):
193
- return self._map_fn(self._augment, inputs)
194
-
195
- def _format_inputs(self, inputs):
196
- if tf.is_tensor(inputs):
197
- # single image input tensor
198
- return {"images": inputs}, False
199
- elif isinstance(inputs, dict):
200
- # TODO(scottzhu): Check if it only contains the valid keys
201
- return inputs, True
202
- else:
203
- raise ValueError(
204
- f"Expect the inputs to be image tensor or dict. Got {inputs}"
205
- )
206
-
207
- def _format_output(self, output, is_dict):
208
- if not is_dict:
209
- return output["images"]
210
- else:
211
- return output
212
-
213
- def _ensure_inputs_are_compute_dtype(self, inputs):
214
- if isinstance(inputs, dict):
215
- inputs["images"] = utils.ensure_tensor(inputs["images"], self.compute_dtype)
216
- else:
217
- inputs = utils.ensure_tensor(inputs, self.compute_dtype)
218
- return inputs
219
-
220
-
221
- @keras_export("keras.layers.RandomBrightness", v1=[])
222
- class RandomBrightness(BaseImageAugmentationLayer):
223
- """A preprocessing layer which randomly adjusts brightness during training.
224
- This layer will randomly increase/reduce the brightness for the input RGB
225
- images. At inference time, the output will be identical to the input.
226
- Call the layer with `training=True` to adjust the brightness of the input.
227
- Note that different brightness adjustment factors
228
- will be apply to each the images in the batch.
229
- For an overview and full list of preprocessing layers, see the preprocessing
230
- [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers).
231
- Args:
232
- factor: Float or a list/tuple of 2 floats between -1.0 and 1.0. The
233
- factor is used to determine the lower bound and upper bound of the
234
- brightness adjustment. A float value will be chosen randomly between
235
- the limits. When -1.0 is chosen, the output image will be black, and
236
- when 1.0 is chosen, the image will be fully white. When only one float
237
- is provided, eg, 0.2, then -0.2 will be used for lower bound and 0.2
238
- will be used for upper bound.
239
- value_range: Optional list/tuple of 2 floats for the lower and upper limit
240
- of the values of the input data. Defaults to [0.0, 255.0]. Can be changed
241
- to e.g. [0.0, 1.0] if the image input has been scaled before this layer.
242
- The brightness adjustment will be scaled to this range, and the
243
- output values will be clipped to this range.
244
- seed: optional integer, for fixed RNG behavior.
245
- Inputs: 3D (HWC) or 4D (NHWC) tensor, with float or int dtype. Input pixel
246
- values can be of any range (e.g. `[0., 1.)` or `[0, 255]`)
247
- Output: 3D (HWC) or 4D (NHWC) tensor with brightness adjusted based on the
248
- `factor`. By default, the layer will output floats. The output value will
249
- be clipped to the range `[0, 255]`, the valid range of RGB colors, and
250
- rescaled based on the `value_range` if needed.
251
- Sample usage:
252
- ```python
253
- random_bright = tf.keras.layers.RandomBrightness(factor=0.2)
254
- # An image with shape [2, 2, 3]
255
- image = [[[1, 2, 3], [4 ,5 ,6]], [[7, 8, 9], [10, 11, 12]]]
256
- # Assume we randomly select the factor to be 0.1, then it will apply
257
- # 0.1 * 255 to all the channel
258
- output = random_bright(image, training=True)
259
- # output will be int64 with 25.5 added to each channel and round down.
260
- tf.Tensor([[[26.5, 27.5, 28.5]
261
- [29.5, 30.5, 31.5]]
262
- [[32.5, 33.5, 34.5]
263
- [35.5, 36.5, 37.5]]],
264
- shape=(2, 2, 3), dtype=int64)
265
- ```
266
- """
267
-
268
- _FACTOR_VALIDATION_ERROR = (
269
- "The `factor` argument should be a number (or a list of two numbers) "
270
- "in the range [-1.0, 1.0]. "
271
- )
272
- _VALUE_RANGE_VALIDATION_ERROR = (
273
- "The `value_range` argument should be a list of two numbers. "
274
- )
275
-
276
- def __init__(self, factor, value_range=(0, 255), seed=None, **kwargs):
277
- base_preprocessing_layer.keras_kpl_gauge.get_cell("RandomBrightness").set(True)
278
- super().__init__(seed=seed, force_generator=True, **kwargs)
279
- self._set_factor(factor)
280
- self._set_value_range(value_range)
281
- self._seed = seed
282
-
283
- def augment_image(self, image, transformation=None):
284
- return self._brightness_adjust(image, transformation["rgb_delta"])
285
-
286
- def augment_label(self, label, transformation=None):
287
- return label
288
-
289
- def get_random_transformation(self, image=None, label=None, bounding_box=None):
290
- rgb_delta_shape = (1, 1, 1)
291
- random_rgb_delta = self._random_generator.random_uniform(
292
- shape=rgb_delta_shape,
293
- minval=self._factor[0],
294
- maxval=self._factor[1],
295
- )
296
- random_rgb_delta = random_rgb_delta * (
297
- self._value_range[1] - self._value_range[0]
298
- )
299
- return {"rgb_delta": random_rgb_delta}
300
-
301
- def _set_value_range(self, value_range):
302
- if not isinstance(value_range, (tuple, list)):
303
- raise ValueError(self._VALUE_RANGE_VALIDATION_ERROR + f"Got {value_range}")
304
- if len(value_range) != 2:
305
- raise ValueError(self._VALUE_RANGE_VALIDATION_ERROR + f"Got {value_range}")
306
- self._value_range = sorted(value_range)
307
-
308
- def _set_factor(self, factor):
309
- if isinstance(factor, (tuple, list)):
310
- if len(factor) != 2:
311
- raise ValueError(self._FACTOR_VALIDATION_ERROR + f"Got {factor}")
312
- self._check_factor_range(factor[0])
313
- self._check_factor_range(factor[1])
314
- self._factor = sorted(factor)
315
- elif isinstance(factor, (int, float)):
316
- self._check_factor_range(factor)
317
- factor = abs(factor)
318
- self._factor = [-factor, factor]
319
- else:
320
- raise ValueError(self._FACTOR_VALIDATION_ERROR + f"Got {factor}")
321
-
322
- def _check_factor_range(self, input_number):
323
- if input_number > 1.0 or input_number < -1.0:
324
- raise ValueError(self._FACTOR_VALIDATION_ERROR + f"Got {input_number}")
325
-
326
- def _brightness_adjust(self, image, rgb_delta):
327
- image = utils.ensure_tensor(image, self.compute_dtype)
328
- rank = image.shape.rank
329
- if rank != 3:
330
- raise ValueError(
331
- "Expected the input image to be rank 3. Got "
332
- f"inputs.shape = {image.shape}"
333
- )
334
- rgb_delta = tf.cast(rgb_delta, image.dtype)
335
- image += rgb_delta
336
- return tf.clip_by_value(image, self._value_range[0], self._value_range[1])
337
-
338
- def get_config(self):
339
- config = {
340
- "factor": self._factor,
341
- "value_range": self._value_range,
342
- "seed": self._seed,
343
- }
344
- base_config = super().get_config()
345
- return dict(list(base_config.items()) + list(config.items()))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
sdh_embedding_umap.ipynb CHANGED
@@ -32,28 +32,25 @@
32
  ],
33
  "source": [
34
  "# List all file in data directory with Pathlib\n",
35
- "from pathlib import Path\n",
36
  "import numpy as np\n",
37
- "import pandas as pd\n",
38
- "import os\n",
39
- "import tensorflow as tf\n",
40
- "import glob\n",
41
  "from tensorflow.keras.preprocessing import image\n",
42
  "from tensorflow.keras.utils import img_to_array\n",
43
  "\n",
44
- "LABELS_DICT = {\"control\":0, \"sick\":1}\n",
45
  "SUB_FOLDERS = [\"control\", \"sick\"]\n",
46
  "\n",
 
47
  "def get_mouse_model(file_path):\n",
48
- " file_name = file_path.split(\"/\")[-1]\n",
49
- " if \"wt\" in file_name.lower():\n",
50
- " return \"wt\"\n",
51
- " elif \"bin1\" in file_name.lower():\n",
52
- " return \"bin1\"\n",
53
- " elif \"dnm2\" in file_name.lower():\n",
54
- " return \"dnm2\"\n",
55
- " else:\n",
56
- " return \"unknown\"\n",
 
57
  "\n",
58
  "def dirty_filter_file_names(file_name):\n",
59
  " file_name = file_name.split(\"/\")[-1]\n",
@@ -64,10 +61,11 @@
64
  " file_name = '_'.join(file_name.split(\"_\")[1:])\n",
65
  " return file_name\n",
66
  "\n",
 
67
  "def generate_dataset(folder, sub_folders=[\"control\", \"inter\", \"sick\"]):\n",
68
  " n_elem = 0\n",
69
  " for sub_folder in sub_folders:\n",
70
- " n_elem += len(glob.glob(os.path.join(folder, sub_folder, \"*.tif\")))\n",
71
  " images_array = np.empty(shape=(n_elem, 256, 256, 3), dtype=np.uint8)\n",
72
  " path_array = []\n",
73
  " mouse_model = []\n",
@@ -75,19 +73,21 @@
75
  " labels_array = np.empty(shape=n_elem, dtype=np.uint8)\n",
76
  " counter = 0\n",
77
  " for index, sub_folder in enumerate(sub_folders):\n",
78
- " path_files = os.path.join(folder, sub_folder, \"*.tif\")\n",
79
- " for img in glob.glob(path_files):\n",
80
- " im = img_to_array(image.load_img(img))\n",
81
- " # im_resized = image.smart_resize(im, (256, 256)) \n",
82
- " path_array.append(img)\n",
83
- " mouse_model.append(get_mouse_model(img))\n",
84
- " mouse_model_full.append(dirty_filter_file_names(img))\n",
85
- " images_array[counter] = tf.image.resize(im, (256,256))\n",
86
- " labels_array[counter] = index\n",
87
- " counter += 1\n",
88
  " return images_array, path_array, labels_array, mouse_model, mouse_model_full\n",
89
  "\n",
90
- "img_data, all_files, labels, mouse_model, mouse_model_full = generate_dataset(\"data/all_images\", sub_folders=SUB_FOLDERS)\n",
 
 
91
  "file_dict = dict(\n",
92
  " file=all_files,\n",
93
  " label=labels,\n",
@@ -239,11 +239,13 @@
239
  "# Load image embetter \n",
240
  "import tensorflow as tf\n",
241
  "import os\n",
242
- "MODEL_NAME = \"data/model.h5\"\n",
 
243
  "model = tf.keras.models.load_model(MODEL_NAME)\n",
244
  "emb_model = tf.keras.models.Sequential()\n",
245
  "emb_model.add(model.get_layer('sequential'))\n",
246
- "emb_model.add(tf.keras.models.Model(inputs=model.get_layer('resnet50v2').input, outputs=model.get_layer('resnet50v2').get_layer('avg_pool').output))\n",
 
247
  "embeddings = emb_model.predict(file_dict[\"image\"])\n",
248
  "with open('data/results/embedding/image_embedding_custom.npy', 'wb') as f:\n",
249
  " np.save(f, embeddings)"
@@ -268,6 +270,7 @@
268
  "source": [
269
  "from umap import UMAP\n",
270
  "import numpy as np\n",
 
271
  "embeddings = np.load(open('data/results/embedding/image_embedding_custom.npy', 'rb'))\n",
272
  "embedding_umap = UMAP().fit_transform(embeddings)\n",
273
  "embedding_umap.shape"
@@ -291,27 +294,27 @@
291
  ],
292
  "source": [
293
  "import matplotlib.pyplot as plt\n",
294
- "from matplotlib.patches import Rectangle\n",
295
  "cdict = {0: 'green', 1: 'red'}\n",
296
  "\n",
297
  "# Get the index of row from embedding_umap where the first column is greater than 0 and the second column is greater than 0\n",
298
  "\n",
299
- "x_condition2 = ((embedding_umap[:,0] > 0) & (embedding_umap[:,0] < 1))\n",
300
- "y_condition2 = ((embedding_umap[:,1] > 4.75) & (embedding_umap[:,1] < 5.5))\n",
301
  "idx_left_cluster = np.where((x_condition2 & y_condition2))[0]\n",
302
  "\n",
303
- "x_condition = ((embedding_umap[:,0] > 4.75) & (embedding_umap[:,0] < 5.75))\n",
304
- "y_condition = ((embedding_umap[:,1] > 4.5) & (embedding_umap[:,1] < 5.25))\n",
305
  "idx_right_cluster = np.where((x_condition & y_condition))[0]\n",
306
  "\n",
307
- "fig, ax = plt.subplots(1, 1, figsize=(10,10))\n",
308
  "for g in np.unique(labels):\n",
309
  " ix = np.where(labels == g)\n",
310
- " ax.scatter(embedding_umap[:, 0][ix], \n",
311
- " embedding_umap[:, 1][ix], \n",
312
- " s=0.3, \n",
313
- " c=cdict[g],\n",
314
- " label=g)\n",
315
  "ax.legend()\n",
316
  "plt.show()"
317
  ]
@@ -333,21 +336,21 @@
333
  }
334
  ],
335
  "source": [
336
- "cdict_model_full = {'BIN1_KO_AAV_EMPTY_TAG':\"red\",\n",
337
- " 'BIN1_KO_AAV_MTM1_TAD':\"blue\",\n",
338
- " 'BIN1_WT_AAV_EMPTY_TAG':\"green\",\n",
339
- " 'SDH_TAM_Bin1cKO_ko_pla':\"orange\",\n",
340
- " 'SDH_TAM_Dnm2S619L_sl_pla':\"brown\",\n",
341
- " 'SDH_TAM_Dnm2S619L_sl_tam':\"black\"}\n",
342
- "fig, ax = plt.subplots(1, 1, figsize=(10,10))\n",
343
  "for g in np.unique(mouse_model_full):\n",
344
  " numpy_mouse_model_full = np.array(mouse_model_full)\n",
345
  " ix = np.where(numpy_mouse_model_full == g)\n",
346
- " ax.scatter(embedding_umap[:, 0][ix], \n",
347
- " embedding_umap[:, 1][ix], \n",
348
- " s=0.3, \n",
349
- " c=cdict_model_full[g],\n",
350
- " label=g)\n",
351
  "ax.legend()\n",
352
  "plt.show()"
353
  ]
@@ -370,15 +373,15 @@
370
  ],
371
  "source": [
372
  "cdict_model = {\"wt\": 'green', \"bin1\": 'red', \"dnm2\": \"blue\", \"unknown\": \"black\"}\n",
373
- "fig, ax = plt.subplots(1, 1, figsize=(10,10))\n",
374
  "for g in np.unique(mouse_model):\n",
375
  " numpy_mouse_model = np.array(mouse_model)\n",
376
  " ix = np.where(numpy_mouse_model == g)\n",
377
- " ax.scatter(embedding_umap[:, 0][ix], \n",
378
- " embedding_umap[:, 1][ix], \n",
379
- " s=0.3, \n",
380
- " c=cdict_model[g],\n",
381
- " label=g)\n",
382
  "ax.legend()\n",
383
  "plt.show()"
384
  ]
@@ -403,8 +406,8 @@
403
  ],
404
  "source": [
405
  "from doubtlab.ensemble import DoubtEnsemble\n",
406
- "from doubtlab.reason import ProbaReason, LongConfidenceReason , WrongPredictionReason, CleanlabReason\n",
407
- "import pandas as pd \n",
408
  "\n",
409
  "# Let's precalculate the proba values.\n",
410
  "probas = model.predict(img_data)\n",
@@ -421,17 +424,19 @@
421
  "# This dataframe now contains the predicates\n",
422
  "doubtlab_df = pd.DataFrame(predicate_dict)\n",
423
  "# Create a new column with 1 if the previous predicates are true else 0\n",
424
- "doubtlab_df['doubt'] = doubtlab_df[[\"proba\",\"long\",\"wrong\",\"cleanlab\"]].ne(0).any(axis=1)\n",
425
  "wrong_strong_idx = doubtlab_df[doubtlab_df[\"long\"] == 1.0].index\n",
426
  "wrong_idx = doubtlab_df[doubtlab_df[\"wrong\"] == 1.0].index\n",
427
  "low_idx = doubtlab_df[doubtlab_df[\"proba\"] == 1.0].index\n",
428
  "cleanlab_idx = doubtlab_df[doubtlab_df[\"cleanlab\"] == 1.0].index\n",
429
  "doubt_idx = doubtlab_df[doubtlab_df[\"doubt\"] == True].index\n",
430
- "print(f\"Total Number of images with wrong strong classficiation: {len(wrong_strong_idx)} ({round(len(wrong_strong_idx)/len(doubtlab_df)*100, 2)}%)\")\n",
431
- "print(f\"Total Number of images with wrong: {len(wrong_idx)} ({round(len(wrong_idx)/len(doubtlab_df)*100, 2)}%)\")\n",
432
- "print(f\"Total Number of images with low probas: {len(low_idx)} ({round(len(low_idx)/len(doubtlab_df)*100, 2)}%)\")\n",
433
- "print(f\"Total Number of images with cleanlab: {len(cleanlab_idx)} ({round(len(cleanlab_idx)/len(doubtlab_df)*100, 2)}%)\")\n",
434
- "print(f\"Total Number of doubts images: {len(doubt_idx)} ({round(len(doubt_idx)/len(doubtlab_df)*100, 2)}%)\")"
 
 
435
  ]
436
  },
437
  {
@@ -459,12 +464,13 @@
459
  ],
460
  "source": [
461
  "wrong_strong_idx = doubtlab_df[doubtlab_df[\"long\"] == 1.0].index\n",
462
- "print(f\"Total Number of images with wrong strong classficiation: {len(wrong_strong_idx)} ({round(len(wrong_strong_idx)/len(doubtlab_df)*100, 2)}%)\")\n",
 
463
  "SUB_FOLDERS = [\"control\", \"sick\"]\n",
464
  "counter = 0\n",
465
- "plt.figure(figsize=(10,10))\n",
466
  "for idx in np.random.choice(wrong_strong_idx, 25, replace=False):\n",
467
- " plt.subplot(5,5,counter+1)\n",
468
  " plt.xticks([])\n",
469
  " plt.yticks([])\n",
470
  " plt.grid(False)\n",
@@ -473,9 +479,9 @@
473
  " plt.imshow(im)\n",
474
  "\n",
475
  " predict_proba = max(probas[idx])\n",
476
- " predicted_class = np.argmax(probas[idx]) \n",
477
  " plt.xlabel(f\"{SUB_FOLDERS[label]} ({SUB_FOLDERS[predicted_class]} {predict_proba:.2f})\")\n",
478
- " counter +=1\n",
479
  "plt.show()\n",
480
  "\n"
481
  ]
@@ -487,12 +493,12 @@
487
  "outputs": [],
488
  "source": [
489
  "wrong_idx = doubtlab_df[doubtlab_df[\"wrong\"] == 1.0].index\n",
490
- "print(f\"Total Number of images with wrong: {len(wrong_idx)} ({round(len(wrong_idx)/len(doubtlab_df)*100, 2)}%)\")\n",
491
  "SUB_FOLDERS = [\"control\", \"sick\"]\n",
492
  "counter = 0\n",
493
- "plt.figure(figsize=(10,10))\n",
494
  "for idx in np.random.choice(wrong_idx, 25, replace=False):\n",
495
- " plt.subplot(5,5,counter+1)\n",
496
  " plt.xticks([])\n",
497
  " plt.yticks([])\n",
498
  " plt.grid(False)\n",
@@ -501,9 +507,9 @@
501
  " plt.imshow(im)\n",
502
  "\n",
503
  " predict_proba = max(probas[idx])\n",
504
- " predicted_class = np.argmax(probas[idx]) \n",
505
  " plt.xlabel(f\"{SUB_FOLDERS[label]} ({SUB_FOLDERS[predicted_class]} {predict_proba:.2f})\")\n",
506
- " counter +=1\n",
507
  "plt.show()\n",
508
  "\n"
509
  ]
@@ -515,12 +521,12 @@
515
  "outputs": [],
516
  "source": [
517
  "low_idx = doubtlab_df[doubtlab_df[\"proba\"] == 1.0].index\n",
518
- "print(f\"Total Number of images with low probas: {len(low_idx)} ({round(len(low_idx)/len(doubtlab_df)*100, 2)}%)\")\n",
519
  "SUB_FOLDERS = [\"control\", \"sick\"]\n",
520
  "counter = 0\n",
521
- "plt.figure(figsize=(10,10))\n",
522
  "for idx in np.random.choice(low_idx, 25, replace=False):\n",
523
- " plt.subplot(5,5,counter+1)\n",
524
  " plt.xticks([])\n",
525
  " plt.yticks([])\n",
526
  " plt.grid(False)\n",
@@ -529,9 +535,9 @@
529
  " plt.imshow(im)\n",
530
  "\n",
531
  " predict_proba = max(probas[idx])\n",
532
- " predicted_class = np.argmax(probas[idx]) \n",
533
  " plt.xlabel(f\"{SUB_FOLDERS[label]} ({SUB_FOLDERS[predicted_class]} {predict_proba:.2f})\")\n",
534
- " counter +=1\n",
535
  "plt.show()\n",
536
  "\n"
537
  ]
@@ -543,12 +549,13 @@
543
  "outputs": [],
544
  "source": [
545
  "cleanlab_idx = doubtlab_df[doubtlab_df[\"cleanlab\"] == 1.0].index\n",
546
- "print(f\"Total Number of images with cleanlab: {len(cleanlab_idx)} ({round(len(cleanlab_idx)/len(doubtlab_df)*100, 2)}%)\")\n",
 
547
  "SUB_FOLDERS = [\"control\", \"sick\"]\n",
548
  "counter = 0\n",
549
- "plt.figure(figsize=(10,10))\n",
550
  "for idx in np.random.choice(cleanlab_idx, 25, replace=False):\n",
551
- " plt.subplot(5,5,counter+1)\n",
552
  " plt.xticks([])\n",
553
  " plt.yticks([])\n",
554
  " plt.grid(False)\n",
@@ -557,9 +564,9 @@
557
  " plt.imshow(im)\n",
558
  "\n",
559
  " predict_proba = max(probas[idx])\n",
560
- " predicted_class = np.argmax(probas[idx]) \n",
561
  " plt.xlabel(f\"{SUB_FOLDERS[label]} ({SUB_FOLDERS[predicted_class]} {predict_proba:.2f})\")\n",
562
- " counter +=1\n",
563
  "plt.show()\n",
564
  "\n"
565
  ]
@@ -573,11 +580,12 @@
573
  "from pigeon import annotate\n",
574
  "from PIL import Image\n",
575
  "from IPython.display import display\n",
576
- "re_annotated_img_files = [ all_files[i] for i in cleanlab_idx ]\n",
 
577
  "annotations = annotate(\n",
578
- " re_annotated_img_files,\n",
579
- " options=[\"control\",\"sick\",\"unsure\"],\n",
580
- " display_fn=lambda filename: display(Image.open(filename, 'r'))\n",
581
  ")"
582
  ]
583
  },
 
32
  ],
33
  "source": [
34
  "# List all file in data directory with Pathlib\n",
 
35
  "import numpy as np\n",
 
 
 
 
36
  "from tensorflow.keras.preprocessing import image\n",
37
  "from tensorflow.keras.utils import img_to_array\n",
38
  "\n",
39
+ "LABELS_DICT = {\"control\": 0, \"sick\": 1}\n",
40
  "SUB_FOLDERS = [\"control\", \"sick\"]\n",
41
  "\n",
42
+ "\n",
43
  "def get_mouse_model(file_path):\n",
44
+ " file_name = file_path.split(\"/\")[-1]\n",
45
+ " if \"wt\" in file_name.lower():\n",
46
+ " return \"wt\"\n",
47
+ " elif \"bin1\" in file_name.lower():\n",
48
+ " return \"bin1\"\n",
49
+ " elif \"dnm2\" in file_name.lower():\n",
50
+ " return \"dnm2\"\n",
51
+ " else:\n",
52
+ " return \"unknown\"\n",
53
+ "\n",
54
  "\n",
55
  "def dirty_filter_file_names(file_name):\n",
56
  " file_name = file_name.split(\"/\")[-1]\n",
 
61
  " file_name = '_'.join(file_name.split(\"_\")[1:])\n",
62
  " return file_name\n",
63
  "\n",
64
+ "\n",
65
  "def generate_dataset(folder, sub_folders=[\"control\", \"inter\", \"sick\"]):\n",
66
  " n_elem = 0\n",
67
  " for sub_folder in sub_folders:\n",
68
+ " n_elem += len(glob.glob(os.path.join(folder, sub_folder, \"*.tif\")))\n",
69
  " images_array = np.empty(shape=(n_elem, 256, 256, 3), dtype=np.uint8)\n",
70
  " path_array = []\n",
71
  " mouse_model = []\n",
 
73
  " labels_array = np.empty(shape=n_elem, dtype=np.uint8)\n",
74
  " counter = 0\n",
75
  " for index, sub_folder in enumerate(sub_folders):\n",
76
+ " path_files = os.path.join(folder, sub_folder, \"*.tif\")\n",
77
+ " for img in glob.glob(path_files):\n",
78
+ " im = img_to_array(image.load_img(img))\n",
79
+ " # im_resized = image.smart_resize(im, (256, 256))\n",
80
+ " path_array.append(img)\n",
81
+ " mouse_model.append(get_mouse_model(img))\n",
82
+ " mouse_model_full.append(dirty_filter_file_names(img))\n",
83
+ " images_array[counter] = tf.image.resize(im, (256, 256))\n",
84
+ " labels_array[counter] = index\n",
85
+ " counter += 1\n",
86
  " return images_array, path_array, labels_array, mouse_model, mouse_model_full\n",
87
  "\n",
88
+ "\n",
89
+ "img_data, all_files, labels, mouse_model, mouse_model_full = generate_dataset(\"data/all_images\",\n",
90
+ " sub_folders=SUB_FOLDERS)\n",
91
  "file_dict = dict(\n",
92
  " file=all_files,\n",
93
  " label=labels,\n",
 
239
  "# Load image embetter \n",
240
  "import tensorflow as tf\n",
241
  "import os\n",
242
+ "\n",
243
+ "MODEL_NAME = \"data/model.keras\"\n",
244
  "model = tf.keras.models.load_model(MODEL_NAME)\n",
245
  "emb_model = tf.keras.models.Sequential()\n",
246
  "emb_model.add(model.get_layer('sequential'))\n",
247
+ "emb_model.add(tf.keras.models.Model(inputs=model.get_layer('resnet50v2').input,\n",
248
+ " outputs=model.get_layer('resnet50v2').get_layer('avg_pool').output))\n",
249
  "embeddings = emb_model.predict(file_dict[\"image\"])\n",
250
  "with open('data/results/embedding/image_embedding_custom.npy', 'wb') as f:\n",
251
  " np.save(f, embeddings)"
 
270
  "source": [
271
  "from umap import UMAP\n",
272
  "import numpy as np\n",
273
+ "\n",
274
  "embeddings = np.load(open('data/results/embedding/image_embedding_custom.npy', 'rb'))\n",
275
  "embedding_umap = UMAP().fit_transform(embeddings)\n",
276
  "embedding_umap.shape"
 
294
  ],
295
  "source": [
296
  "import matplotlib.pyplot as plt\n",
297
+ "\n",
298
  "cdict = {0: 'green', 1: 'red'}\n",
299
  "\n",
300
  "# Get the index of row from embedding_umap where the first column is greater than 0 and the second column is greater than 0\n",
301
  "\n",
302
+ "x_condition2 = ((embedding_umap[:, 0] > 0) & (embedding_umap[:, 0] < 1))\n",
303
+ "y_condition2 = ((embedding_umap[:, 1] > 4.75) & (embedding_umap[:, 1] < 5.5))\n",
304
  "idx_left_cluster = np.where((x_condition2 & y_condition2))[0]\n",
305
  "\n",
306
+ "x_condition = ((embedding_umap[:, 0] > 4.75) & (embedding_umap[:, 0] < 5.75))\n",
307
+ "y_condition = ((embedding_umap[:, 1] > 4.5) & (embedding_umap[:, 1] < 5.25))\n",
308
  "idx_right_cluster = np.where((x_condition & y_condition))[0]\n",
309
  "\n",
310
+ "fig, ax = plt.subplots(1, 1, figsize=(10, 10))\n",
311
  "for g in np.unique(labels):\n",
312
  " ix = np.where(labels == g)\n",
313
+ " ax.scatter(embedding_umap[:, 0][ix],\n",
314
+ " embedding_umap[:, 1][ix],\n",
315
+ " s=0.3,\n",
316
+ " c=cdict[g],\n",
317
+ " label=g)\n",
318
  "ax.legend()\n",
319
  "plt.show()"
320
  ]
 
336
  }
337
  ],
338
  "source": [
339
+ "cdict_model_full = {'BIN1_KO_AAV_EMPTY_TAG': \"red\",\n",
340
+ " 'BIN1_KO_AAV_MTM1_TAD': \"blue\",\n",
341
+ " 'BIN1_WT_AAV_EMPTY_TAG': \"green\",\n",
342
+ " 'SDH_TAM_Bin1cKO_ko_pla': \"orange\",\n",
343
+ " 'SDH_TAM_Dnm2S619L_sl_pla': \"brown\",\n",
344
+ " 'SDH_TAM_Dnm2S619L_sl_tam': \"black\"}\n",
345
+ "fig, ax = plt.subplots(1, 1, figsize=(10, 10))\n",
346
  "for g in np.unique(mouse_model_full):\n",
347
  " numpy_mouse_model_full = np.array(mouse_model_full)\n",
348
  " ix = np.where(numpy_mouse_model_full == g)\n",
349
+ " ax.scatter(embedding_umap[:, 0][ix],\n",
350
+ " embedding_umap[:, 1][ix],\n",
351
+ " s=0.3,\n",
352
+ " c=cdict_model_full[g],\n",
353
+ " label=g)\n",
354
  "ax.legend()\n",
355
  "plt.show()"
356
  ]
 
373
  ],
374
  "source": [
375
  "cdict_model = {\"wt\": 'green', \"bin1\": 'red', \"dnm2\": \"blue\", \"unknown\": \"black\"}\n",
376
+ "fig, ax = plt.subplots(1, 1, figsize=(10, 10))\n",
377
  "for g in np.unique(mouse_model):\n",
378
  " numpy_mouse_model = np.array(mouse_model)\n",
379
  " ix = np.where(numpy_mouse_model == g)\n",
380
+ " ax.scatter(embedding_umap[:, 0][ix],\n",
381
+ " embedding_umap[:, 1][ix],\n",
382
+ " s=0.3,\n",
383
+ " c=cdict_model[g],\n",
384
+ " label=g)\n",
385
  "ax.legend()\n",
386
  "plt.show()"
387
  ]
 
406
  ],
407
  "source": [
408
  "from doubtlab.ensemble import DoubtEnsemble\n",
409
+ "from doubtlab.reason import ProbaReason, LongConfidenceReason, WrongPredictionReason, CleanlabReason\n",
410
+ "import pandas as pd\n",
411
  "\n",
412
  "# Let's precalculate the proba values.\n",
413
  "probas = model.predict(img_data)\n",
 
424
  "# This dataframe now contains the predicates\n",
425
  "doubtlab_df = pd.DataFrame(predicate_dict)\n",
426
  "# Create a new column with 1 if the previous predicates are true else 0\n",
427
+ "doubtlab_df['doubt'] = doubtlab_df[[\"proba\", \"long\", \"wrong\", \"cleanlab\"]].ne(0).any(axis=1)\n",
428
  "wrong_strong_idx = doubtlab_df[doubtlab_df[\"long\"] == 1.0].index\n",
429
  "wrong_idx = doubtlab_df[doubtlab_df[\"wrong\"] == 1.0].index\n",
430
  "low_idx = doubtlab_df[doubtlab_df[\"proba\"] == 1.0].index\n",
431
  "cleanlab_idx = doubtlab_df[doubtlab_df[\"cleanlab\"] == 1.0].index\n",
432
  "doubt_idx = doubtlab_df[doubtlab_df[\"doubt\"] == True].index\n",
433
+ "print(\n",
434
+ " f\"Total Number of images with wrong strong classficiation: {len(wrong_strong_idx)} ({round(len(wrong_strong_idx) / len(doubtlab_df) * 100, 2)}%)\")\n",
435
+ "print(f\"Total Number of images with wrong: {len(wrong_idx)} ({round(len(wrong_idx) / len(doubtlab_df) * 100, 2)}%)\")\n",
436
+ "print(f\"Total Number of images with low probas: {len(low_idx)} ({round(len(low_idx) / len(doubtlab_df) * 100, 2)}%)\")\n",
437
+ "print(\n",
438
+ " f\"Total Number of images with cleanlab: {len(cleanlab_idx)} ({round(len(cleanlab_idx) / len(doubtlab_df) * 100, 2)}%)\")\n",
439
+ "print(f\"Total Number of doubts images: {len(doubt_idx)} ({round(len(doubt_idx) / len(doubtlab_df) * 100, 2)}%)\")"
440
  ]
441
  },
442
  {
 
464
  ],
465
  "source": [
466
  "wrong_strong_idx = doubtlab_df[doubtlab_df[\"long\"] == 1.0].index\n",
467
+ "print(\n",
468
+ " f\"Total Number of images with wrong strong classficiation: {len(wrong_strong_idx)} ({round(len(wrong_strong_idx) / len(doubtlab_df) * 100, 2)}%)\")\n",
469
  "SUB_FOLDERS = [\"control\", \"sick\"]\n",
470
  "counter = 0\n",
471
+ "plt.figure(figsize=(10, 10))\n",
472
  "for idx in np.random.choice(wrong_strong_idx, 25, replace=False):\n",
473
+ " plt.subplot(5, 5, counter + 1)\n",
474
  " plt.xticks([])\n",
475
  " plt.yticks([])\n",
476
  " plt.grid(False)\n",
 
479
  " plt.imshow(im)\n",
480
  "\n",
481
  " predict_proba = max(probas[idx])\n",
482
+ " predicted_class = np.argmax(probas[idx])\n",
483
  " plt.xlabel(f\"{SUB_FOLDERS[label]} ({SUB_FOLDERS[predicted_class]} {predict_proba:.2f})\")\n",
484
+ " counter += 1\n",
485
  "plt.show()\n",
486
  "\n"
487
  ]
 
493
  "outputs": [],
494
  "source": [
495
  "wrong_idx = doubtlab_df[doubtlab_df[\"wrong\"] == 1.0].index\n",
496
+ "print(f\"Total Number of images with wrong: {len(wrong_idx)} ({round(len(wrong_idx) / len(doubtlab_df) * 100, 2)}%)\")\n",
497
  "SUB_FOLDERS = [\"control\", \"sick\"]\n",
498
  "counter = 0\n",
499
+ "plt.figure(figsize=(10, 10))\n",
500
  "for idx in np.random.choice(wrong_idx, 25, replace=False):\n",
501
+ " plt.subplot(5, 5, counter + 1)\n",
502
  " plt.xticks([])\n",
503
  " plt.yticks([])\n",
504
  " plt.grid(False)\n",
 
507
  " plt.imshow(im)\n",
508
  "\n",
509
  " predict_proba = max(probas[idx])\n",
510
+ " predicted_class = np.argmax(probas[idx])\n",
511
  " plt.xlabel(f\"{SUB_FOLDERS[label]} ({SUB_FOLDERS[predicted_class]} {predict_proba:.2f})\")\n",
512
+ " counter += 1\n",
513
  "plt.show()\n",
514
  "\n"
515
  ]
 
521
  "outputs": [],
522
  "source": [
523
  "low_idx = doubtlab_df[doubtlab_df[\"proba\"] == 1.0].index\n",
524
+ "print(f\"Total Number of images with low probas: {len(low_idx)} ({round(len(low_idx) / len(doubtlab_df) * 100, 2)}%)\")\n",
525
  "SUB_FOLDERS = [\"control\", \"sick\"]\n",
526
  "counter = 0\n",
527
+ "plt.figure(figsize=(10, 10))\n",
528
  "for idx in np.random.choice(low_idx, 25, replace=False):\n",
529
+ " plt.subplot(5, 5, counter + 1)\n",
530
  " plt.xticks([])\n",
531
  " plt.yticks([])\n",
532
  " plt.grid(False)\n",
 
535
  " plt.imshow(im)\n",
536
  "\n",
537
  " predict_proba = max(probas[idx])\n",
538
+ " predicted_class = np.argmax(probas[idx])\n",
539
  " plt.xlabel(f\"{SUB_FOLDERS[label]} ({SUB_FOLDERS[predicted_class]} {predict_proba:.2f})\")\n",
540
+ " counter += 1\n",
541
  "plt.show()\n",
542
  "\n"
543
  ]
 
549
  "outputs": [],
550
  "source": [
551
  "cleanlab_idx = doubtlab_df[doubtlab_df[\"cleanlab\"] == 1.0].index\n",
552
+ "print(\n",
553
+ " f\"Total Number of images with cleanlab: {len(cleanlab_idx)} ({round(len(cleanlab_idx) / len(doubtlab_df) * 100, 2)}%)\")\n",
554
  "SUB_FOLDERS = [\"control\", \"sick\"]\n",
555
  "counter = 0\n",
556
+ "plt.figure(figsize=(10, 10))\n",
557
  "for idx in np.random.choice(cleanlab_idx, 25, replace=False):\n",
558
+ " plt.subplot(5, 5, counter + 1)\n",
559
  " plt.xticks([])\n",
560
  " plt.yticks([])\n",
561
  " plt.grid(False)\n",
 
564
  " plt.imshow(im)\n",
565
  "\n",
566
  " predict_proba = max(probas[idx])\n",
567
+ " predicted_class = np.argmax(probas[idx])\n",
568
  " plt.xlabel(f\"{SUB_FOLDERS[label]} ({SUB_FOLDERS[predicted_class]} {predict_proba:.2f})\")\n",
569
+ " counter += 1\n",
570
  "plt.show()\n",
571
  "\n"
572
  ]
 
580
  "from pigeon import annotate\n",
581
  "from PIL import Image\n",
582
  "from IPython.display import display\n",
583
+ "\n",
584
+ "re_annotated_img_files = [all_files[i] for i in cleanlab_idx]\n",
585
  "annotations = annotate(\n",
586
+ " re_annotated_img_files,\n",
587
+ " options=[\"control\", \"sick\", \"unsure\"],\n",
588
+ " display_fn=lambda filename: display(Image.open(filename, 'r'))\n",
589
  ")"
590
  ]
591
  },
uv.lock ADDED
The diff for this file is too large to render. See raw diff