File size: 6,194 Bytes
670e3bf 32b73e1 670e3bf 32b73e1 670e3bf facc8c2 670e3bf 5542217 b6af5ac ebd5c8a 5542217 6b74dac 5542217 ebd5c8a 670e3bf 32b73e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
---
license: cc-by-nc-2.0
tags:
- merge
- mergekit
- lazymergekit
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO
base_model:
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO
model-index:
- name: kuno-royale-v2-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 72.01
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=core-3/kuno-royale-v2-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.15
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=core-3/kuno-royale-v2-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.07
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=core-3/kuno-royale-v2-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 71.1
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=core-3/kuno-royale-v2-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.24
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=core-3/kuno-royale-v2-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.2
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=core-3/kuno-royale-v2-7b
name: Open LLM Leaderboard
---
![image/png](https://huggingface.co/core-3/kuno-royale-v2-7b/resolve/main/.assets/kuno-royale-v2-7b.png)
# kuno-royale-v2-7b
An attempt to further strengthen the roleplaying prose of [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B) using [eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO](https://huggingface.co/eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO), a high-scorer for 7B models on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
Personal RP tests prove promising, and meaningless leaderboard metrics have improved vs [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B).
Some GGUF quants available [here](https://huggingface.co/core-3/kuno-royale-v2-7b-GGUF).
Works well with Silly Tavern Noromaid template recommended by [SanjiWatsuki for Kunoichi-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-7B): [Context](https://files.catbox.moe/ifmhai.json), [Instruct](https://files.catbox.moe/ttw1l9.json)
|Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
|-------------------|---------|-----|-----------|------|------------|------------|-------|
| eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO | 76.45 | 73.12 | 89.09 | 64.80 | 77.45 | 84.77 | 69.45 |
| **core-3/kuno-royale-v2-7b** | **74.80** | **72.01** | **88.15** | **65.07** | **71.10** | **82.24** | **70.20** |
| [core-3/kuno-royale-7B](https://huggingface.co/core-3/kuno-royale-7B) | 74.74 | 71.76 | 88.20 | 65.13 | 71.12 | 82.32 | 69.90
| SanjiWatsuki/Kunoichi-DPO-v2-7B | 72.46 | 69.62 | 87.44 | 64.94 | 66.06 | 80.82 | 65.88 |
| SanjiWatsuki/Kunoichi-7B | 72.13 | 68.69 | 87.10 | 64.90 | 64.04 | 81.06 | 67.02 |
# Original LazyMergekit Card:
kuno-royale-v2-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B)
* [eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO](https://huggingface.co/eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: SanjiWatsuki/Kunoichi-DPO-v2-7B
layer_range: [0, 32]
- model: eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO
layer_range: [0, 32]
merge_method: slerp
base_model: SanjiWatsuki/Kunoichi-DPO-v2-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "core-3/kuno-royale-v2-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
|