Update README.md
Browse files
README.md
CHANGED
@@ -31,6 +31,391 @@ A Hindi language generation model with the following specifications:
|
|
31 |
## Training
|
32 |
|
33 |
The model was trained on a large corpus of Hindi text using a cosine learning rate schedule with warmup. Training utilized mixed-precision and distributed data parallel across multiple GPUs.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
## Capabilities
|
36 |
|
|
|
31 |
## Training
|
32 |
|
33 |
The model was trained on a large corpus of Hindi text using a cosine learning rate schedule with warmup. Training utilized mixed-precision and distributed data parallel across multiple GPUs.
|
34 |
+
## Usage
|
35 |
+
|
36 |
+
You can use this model with the following code:
|
37 |
+
|
38 |
+
```python
|
39 |
+
import torch
|
40 |
+
import math
|
41 |
+
import os
|
42 |
+
from hindi_embeddings import SentencePieceTokenizerWrapper
|
43 |
+
from safetensors.torch import load_file
|
44 |
+
from torch import nn
|
45 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
46 |
+
|
47 |
+
|
48 |
+
class ConvaiCausalLMConfig(PretrainedConfig):
|
49 |
+
model_type = "convaicausallm"
|
50 |
+
|
51 |
+
def __init__(
|
52 |
+
self,
|
53 |
+
vocab_size=16000,
|
54 |
+
hidden_size=768,
|
55 |
+
num_hidden_layers=12,
|
56 |
+
num_attention_heads=16,
|
57 |
+
num_key_value_heads=4,
|
58 |
+
intermediate_size=3072,
|
59 |
+
hidden_act="silu",
|
60 |
+
max_position_embeddings=512,
|
61 |
+
rope_theta=10000.0, # Base parameter for RoPE
|
62 |
+
**kwargs
|
63 |
+
):
|
64 |
+
super().__init__(**kwargs)
|
65 |
+
self.vocab_size = vocab_size
|
66 |
+
self.hidden_size = hidden_size
|
67 |
+
self.num_hidden_layers = num_hidden_layers
|
68 |
+
self.num_attention_heads = num_attention_heads
|
69 |
+
self.num_key_value_heads = num_key_value_heads
|
70 |
+
self.intermediate_size = intermediate_size
|
71 |
+
self.hidden_act = hidden_act
|
72 |
+
self.max_position_embeddings = max_position_embeddings
|
73 |
+
self.rope_theta = rope_theta
|
74 |
+
|
75 |
+
|
76 |
+
def precompute_freqs_cis(dim, end, theta=10000.0):
|
77 |
+
"""Precompute the frequency tensor for complex exponentials (cos, sin)"""
|
78 |
+
# Ensure dim is even for complex numbers
|
79 |
+
assert dim % 2 == 0, "Dimension must be even"
|
80 |
+
|
81 |
+
# Create position indices for caching
|
82 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
|
83 |
+
t = torch.arange(end).float()
|
84 |
+
freqs = torch.outer(t, freqs) # [end, dim/2]
|
85 |
+
|
86 |
+
# Create complex exponentials (cos, sin pairs)
|
87 |
+
cos, sin = torch.cos(freqs), torch.sin(freqs)
|
88 |
+
return cos, sin
|
89 |
+
|
90 |
+
|
91 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None):
|
92 |
+
"""Apply rotary position embeddings to q and k tensors"""
|
93 |
+
# Extract shapes
|
94 |
+
batch, seq_len, n_heads, head_dim = q.shape
|
95 |
+
_, kv_seq_len, n_kv_heads, _ = k.shape
|
96 |
+
|
97 |
+
# Handle position IDs or use sequential positions
|
98 |
+
if position_ids is None:
|
99 |
+
# Default: Just use sequential positions
|
100 |
+
position_ids = torch.arange(seq_len, device=q.device)
|
101 |
+
position_ids = position_ids.unsqueeze(0).expand(batch, -1)
|
102 |
+
|
103 |
+
# Get the cosine and sine for the positions we're using
|
104 |
+
cos = cos[position_ids].unsqueeze(-2) # [batch, seq, 1, dim/2]
|
105 |
+
sin = sin[position_ids].unsqueeze(-2) # [batch, seq, 1, dim/2]
|
106 |
+
|
107 |
+
# q and k must be arranged in pairs for rotation
|
108 |
+
q_embed_dim = q.shape[-1]
|
109 |
+
q_half_dim = q_embed_dim // 2
|
110 |
+
|
111 |
+
# Split the embedding dimensions into pairs
|
112 |
+
q_half1, q_half2 = q[..., :q_half_dim], q[..., q_half_dim:]
|
113 |
+
k_half1, k_half2 = k[..., :q_half_dim], k[..., q_half_dim:]
|
114 |
+
|
115 |
+
# Apply rotary embeddings to each pair of dimensions
|
116 |
+
# For each pair (a, b), we compute (a*cos - b*sin, a*sin + b*cos)
|
117 |
+
q_out_half1 = q_half1 * cos - q_half2 * sin
|
118 |
+
q_out_half2 = q_half1 * sin + q_half2 * cos
|
119 |
+
k_out_half1 = k_half1 * cos - k_half2 * sin
|
120 |
+
k_out_half2 = k_half1 * sin + k_half2 * cos
|
121 |
+
|
122 |
+
# Concatenate back to original shape
|
123 |
+
q_out = torch.cat([q_out_half1, q_out_half2], dim=-1)
|
124 |
+
k_out = torch.cat([k_out_half1, k_out_half2], dim=-1)
|
125 |
+
|
126 |
+
return q_out, k_out
|
127 |
+
|
128 |
+
|
129 |
+
class GroupedQueryAttention(nn.Module):
|
130 |
+
def __init__(self, config):
|
131 |
+
super().__init__()
|
132 |
+
self.hidden_size = config.hidden_size
|
133 |
+
self.num_heads = config.num_attention_heads
|
134 |
+
self.num_kv_heads = config.num_key_value_heads
|
135 |
+
self.head_dim = config.hidden_size // config.num_attention_heads
|
136 |
+
|
137 |
+
# For MQA/GQA support
|
138 |
+
self.num_key_value_groups = self.num_heads // self.num_kv_heads
|
139 |
+
|
140 |
+
self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.head_dim)
|
141 |
+
self.k_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim)
|
142 |
+
self.v_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim)
|
143 |
+
self.o_proj = nn.Linear(config.hidden_size, config.hidden_size)
|
144 |
+
|
145 |
+
# Precompute rotary position encoding frequencies
|
146 |
+
max_seq_len = config.max_position_embeddings
|
147 |
+
self.max_seq_len = max_seq_len
|
148 |
+
|
149 |
+
# Register frequencies as buffers
|
150 |
+
cos, sin = precompute_freqs_cis(self.head_dim, max_seq_len, config.rope_theta)
|
151 |
+
self.register_buffer("cos", cos) # [max_seq_len, dim/2]
|
152 |
+
self.register_buffer("sin", sin) # [max_seq_len, dim/2]
|
153 |
+
|
154 |
+
# Create causal mask for attention
|
155 |
+
self.register_buffer(
|
156 |
+
"causal_mask",
|
157 |
+
torch.triu(torch.ones(max_seq_len, max_seq_len) * -1e9, diagonal=1)
|
158 |
+
)
|
159 |
+
|
160 |
+
def forward(self, hidden_states, attention_mask=None):
|
161 |
+
batch_size, seq_len, _ = hidden_states.size()
|
162 |
+
|
163 |
+
# Project queries, keys, values
|
164 |
+
q = self.q_proj(hidden_states)
|
165 |
+
k = self.k_proj(hidden_states)
|
166 |
+
v = self.v_proj(hidden_states)
|
167 |
+
|
168 |
+
# Reshape for attention computation
|
169 |
+
q = q.view(batch_size, seq_len, self.num_heads, self.head_dim)
|
170 |
+
k = k.view(batch_size, seq_len, self.num_kv_heads, self.head_dim)
|
171 |
+
v = v.view(batch_size, seq_len, self.num_kv_heads, self.head_dim)
|
172 |
+
|
173 |
+
# Apply rotary position embeddings
|
174 |
+
q_rotary, k_rotary = apply_rotary_pos_emb(q, k, self.cos, self.sin)
|
175 |
+
|
176 |
+
# Reshape for attention computation
|
177 |
+
q_rotary = q_rotary.transpose(1, 2) # [batch, heads, seq, dim]
|
178 |
+
k_rotary = k_rotary.transpose(1, 2) # [batch, kv_heads, seq, dim]
|
179 |
+
v = v.transpose(1, 2) # [batch, kv_heads, seq, dim]
|
180 |
+
|
181 |
+
# Handle Multi-Query Attention / Grouped-Query Attention
|
182 |
+
if self.num_key_value_groups > 1:
|
183 |
+
# Repeat k, v for each query in the group
|
184 |
+
k_rotary = k_rotary.repeat_interleave(self.num_key_value_groups, dim=1)
|
185 |
+
v = v.repeat_interleave(self.num_key_value_groups, dim=1)
|
186 |
+
|
187 |
+
# Compute attention scores
|
188 |
+
attn_scores = torch.matmul(q_rotary, k_rotary.transpose(-1, -2)) / (self.head_dim ** 0.5)
|
189 |
+
|
190 |
+
# Apply causal mask - only attend to previous tokens
|
191 |
+
causal_mask = self.causal_mask[:seq_len, :seq_len]
|
192 |
+
attn_scores = attn_scores + causal_mask
|
193 |
+
|
194 |
+
# Apply attention mask if provided
|
195 |
+
if attention_mask is not None:
|
196 |
+
attn_scores = attn_scores + attention_mask
|
197 |
+
|
198 |
+
# Normalize the attention scores to probabilities
|
199 |
+
attn_probs = torch.softmax(attn_scores, dim=-1)
|
200 |
+
|
201 |
+
# Apply attention to values
|
202 |
+
context = torch.matmul(attn_probs, v) # [b, n_heads, seq, head_dim]
|
203 |
+
|
204 |
+
# Reshape back to [batch_size, seq_length, hidden_size]
|
205 |
+
context = context.transpose(1, 2).contiguous()
|
206 |
+
context = context.view(batch_size, seq_len, -1)
|
207 |
+
|
208 |
+
# Final projection
|
209 |
+
output = self.o_proj(context)
|
210 |
+
|
211 |
+
return output
|
212 |
+
|
213 |
+
|
214 |
+
class ConvaiCausalLM(PreTrainedModel):
|
215 |
+
config_class = ConvaiCausalLMConfig
|
216 |
+
|
217 |
+
def __init__(self, config):
|
218 |
+
super().__init__(config)
|
219 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
220 |
+
self.layers = nn.ModuleList([
|
221 |
+
nn.ModuleDict({
|
222 |
+
"self_attn": GroupedQueryAttention(config),
|
223 |
+
"mlp": nn.Sequential(
|
224 |
+
nn.Linear(config.hidden_size, config.intermediate_size),
|
225 |
+
nn.SiLU(),
|
226 |
+
nn.Linear(config.intermediate_size, config.hidden_size)
|
227 |
+
),
|
228 |
+
"input_layernorm": nn.LayerNorm(config.hidden_size),
|
229 |
+
"post_attention_layernorm": nn.LayerNorm(config.hidden_size)
|
230 |
+
}) for _ in range(config.num_hidden_layers)
|
231 |
+
])
|
232 |
+
self.norm = nn.LayerNorm(config.hidden_size)
|
233 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
234 |
+
|
235 |
+
# Initialize weights
|
236 |
+
self.apply(self._init_weights)
|
237 |
+
|
238 |
+
def _init_weights(self, module):
|
239 |
+
if isinstance(module, nn.Linear):
|
240 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
241 |
+
if module.bias is not None:
|
242 |
+
torch.nn.init.zeros_(module.bias)
|
243 |
+
elif isinstance(module, nn.Embedding):
|
244 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
245 |
+
|
246 |
+
def _prepare_attention_mask(self, attention_mask, input_shape, device):
|
247 |
+
# Prepare masks for attention
|
248 |
+
if attention_mask is None:
|
249 |
+
attention_mask = torch.ones(input_shape, device=device)
|
250 |
+
|
251 |
+
# Make broadcastable shape: [batch, 1, 1, seq_len]
|
252 |
+
extended_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
253 |
+
|
254 |
+
# Convert to additive mask (0 for valid, -10000 for masked)
|
255 |
+
extended_mask = (1.0 - extended_mask) * -10000.0
|
256 |
+
|
257 |
+
return extended_mask
|
258 |
+
|
259 |
+
def forward(self, input_ids, attention_mask=None):
|
260 |
+
batch_size, seq_len = input_ids.shape
|
261 |
+
device = input_ids.device
|
262 |
+
|
263 |
+
# Prepare attention mask
|
264 |
+
if attention_mask is not None:
|
265 |
+
attention_mask = self._prepare_attention_mask(
|
266 |
+
attention_mask, (batch_size, seq_len), device
|
267 |
+
)
|
268 |
+
|
269 |
+
# Get embeddings
|
270 |
+
hidden_states = self.embed_tokens(input_ids)
|
271 |
+
|
272 |
+
# Apply each layer
|
273 |
+
for layer in self.layers:
|
274 |
+
residual = hidden_states
|
275 |
+
|
276 |
+
# First norm and attention
|
277 |
+
hidden_states = layer["input_layernorm"](hidden_states)
|
278 |
+
hidden_states = layer["self_attn"](hidden_states, attention_mask)
|
279 |
+
hidden_states = residual + hidden_states
|
280 |
+
|
281 |
+
# Second norm and MLP
|
282 |
+
residual = hidden_states
|
283 |
+
hidden_states = layer["post_attention_layernorm"](hidden_states)
|
284 |
+
hidden_states = layer["mlp"](hidden_states)
|
285 |
+
hidden_states = residual + hidden_states
|
286 |
+
|
287 |
+
# Final norm
|
288 |
+
hidden_states = self.norm(hidden_states)
|
289 |
+
|
290 |
+
# Compute logits
|
291 |
+
logits = self.lm_head(hidden_states)
|
292 |
+
|
293 |
+
return logits
|
294 |
+
|
295 |
+
|
296 |
+
class HindiLLMGenerator:
|
297 |
+
def __init__(self, model_path, device=None):
|
298 |
+
# Set device
|
299 |
+
if device is None:
|
300 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
301 |
+
else:
|
302 |
+
self.device = torch.device(device)
|
303 |
+
|
304 |
+
print(f"Using device: {self.device}")
|
305 |
+
|
306 |
+
# Load tokenizer
|
307 |
+
tokenizer_path = os.path.join(model_path, "tokenizer.model")
|
308 |
+
self.tokenizer = SentencePieceTokenizerWrapper(tokenizer_path)
|
309 |
+
|
310 |
+
# Load model config
|
311 |
+
config_path = os.path.join(model_path, "config.json")
|
312 |
+
import json
|
313 |
+
with open(config_path, 'r') as f:
|
314 |
+
config_dict = json.load(f)
|
315 |
+
|
316 |
+
self.config = ConvaiCausalLMConfig(**config_dict)
|
317 |
+
|
318 |
+
# Load model - try safetensors first, fall back to PyTorch bin if needed
|
319 |
+
safetensors_path = os.path.join(model_path, "model.safetensors")
|
320 |
+
pytorch_path = os.path.join(model_path, "pytorch_model.bin")
|
321 |
+
|
322 |
+
self.model = ConvaiCausalLM(self.config)
|
323 |
+
|
324 |
+
# Check which format is available and load accordingly
|
325 |
+
if os.path.exists(safetensors_path):
|
326 |
+
print(f"Loading model from SafeTensors")
|
327 |
+
state_dict = load_file(safetensors_path, device="cpu")
|
328 |
+
self.model.load_state_dict(state_dict)
|
329 |
+
elif os.path.exists(pytorch_path):
|
330 |
+
print(f"Loading model from PyTorch bin")
|
331 |
+
self.model.load_state_dict(torch.load(pytorch_path, map_location="cpu"))
|
332 |
+
|
333 |
+
# Move model to device and set to evaluation mode
|
334 |
+
self.model.to(self.device)
|
335 |
+
self.model.eval()
|
336 |
+
|
337 |
+
def generate(self, prompt, max_length=100, temperature=0.8, top_k=50, top_p=0.9,
|
338 |
+
repetition_penalty=1.1, do_sample=True):
|
339 |
+
# Tokenize the prompt
|
340 |
+
input_ids = self.tokenizer.sp_model.EncodeAsIds(prompt)
|
341 |
+
input_tensor = torch.tensor([input_ids], dtype=torch.long).to(self.device)
|
342 |
+
|
343 |
+
# Start with the input tensor
|
344 |
+
output_sequence = input_tensor.clone()
|
345 |
+
|
346 |
+
# Generate tokens one by one
|
347 |
+
for _ in range(max_length - len(input_ids)):
|
348 |
+
with torch.no_grad():
|
349 |
+
# Get the model's output for the current sequence
|
350 |
+
outputs = self.model(output_sequence)
|
351 |
+
next_token_logits = outputs[0, -1, :]
|
352 |
+
|
353 |
+
# Apply temperature
|
354 |
+
if temperature > 0:
|
355 |
+
next_token_logits = next_token_logits / temperature
|
356 |
+
|
357 |
+
# Apply repetition penalty
|
358 |
+
if repetition_penalty > 1.0:
|
359 |
+
for token_id in output_sequence[0].tolist():
|
360 |
+
next_token_logits[token_id] /= repetition_penalty
|
361 |
+
|
362 |
+
# Filter with top-k sampling
|
363 |
+
if top_k > 0:
|
364 |
+
top_k_values, top_k_indices = torch.topk(next_token_logits, top_k)
|
365 |
+
next_token_logits = torch.full_like(next_token_logits, float('-inf'))
|
366 |
+
next_token_logits.scatter_(0, top_k_indices, top_k_values)
|
367 |
+
|
368 |
+
# Filter with top-p/nucleus sampling
|
369 |
+
if top_p < 1.0 and do_sample:
|
370 |
+
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
|
371 |
+
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
372 |
+
|
373 |
+
# Remove tokens with cumulative probability above the threshold
|
374 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
375 |
+
# Shift the indices to the right to keep the first token above the threshold
|
376 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
377 |
+
sorted_indices_to_remove[..., 0] = 0
|
378 |
+
|
379 |
+
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
380 |
+
next_token_logits[indices_to_remove] = float('-inf')
|
381 |
+
|
382 |
+
# Sample or choose the next token
|
383 |
+
if do_sample:
|
384 |
+
probs = torch.softmax(next_token_logits, dim=-1)
|
385 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
386 |
+
else:
|
387 |
+
next_token = torch.argmax(next_token_logits, dim=-1).unsqueeze(0)
|
388 |
+
|
389 |
+
# Add the next token to the sequence
|
390 |
+
output_sequence = torch.cat([output_sequence, next_token.unsqueeze(0)], dim=1)
|
391 |
+
|
392 |
+
# Check if we've generated an end token
|
393 |
+
if next_token.item() == self.tokenizer.eos_token_id:
|
394 |
+
break
|
395 |
+
|
396 |
+
# Decode the generated sequence
|
397 |
+
generated_ids = output_sequence[0].tolist()
|
398 |
+
generated_text = self.tokenizer.sp_model.DecodeIds(generated_ids)
|
399 |
+
|
400 |
+
return generated_text
|
401 |
+
|
402 |
+
# Example usage
|
403 |
+
if __name__ == "__main__":
|
404 |
+
generator = HindiLLMGenerator("path/to/model")
|
405 |
+
result = generator.generate("भारत एक विशाल देश है")
|
406 |
+
print(result)
|
407 |
+
```
|
408 |
+
|
409 |
+
## Example Prompts
|
410 |
+
|
411 |
+
Try the model with these example prompts:
|
412 |
+
|
413 |
+
```
|
414 |
+
भारत एक विशाल देश है
|
415 |
+
मुझे हिंदी में एक कहानी सुनाओ
|
416 |
+
आज का मौसम बहुत अच्छा है
|
417 |
+
हिंदी साहित्य की प्रमुख विशेषताएं
|
418 |
+
```
|
419 |
|
420 |
## Capabilities
|
421 |
|