AnimateDiff-A1111 / convert.py
conrevo's picture
doc
70764d1
import argparse
import re
import torch
import safetensors.torch
def convert_mm_name_to_compvis(key):
sd_module_key, _, network_part = re.split(r'(_lora\.)', key)
sd_module_key = sd_module_key.replace("processor.", "").replace("to_out", "to_out.0")
sd_module_key = sd_module_key.replace(".", "_")
return f'{sd_module_key}.lora_{network_part}'
def convert_from_diffuser_state_dict(ad_cn_l):
unet_conversion_map = [
# (stable-diffusion, HF Diffusers)
("time_embed.0.weight", "time_embedding.linear_1.weight"),
("time_embed.0.bias", "time_embedding.linear_1.bias"),
("time_embed.2.weight", "time_embedding.linear_2.weight"),
("time_embed.2.bias", "time_embedding.linear_2.bias"),
("label_emb.0.0.weight", "add_embedding.linear_1.weight"),
("label_emb.0.0.bias", "add_embedding.linear_1.bias"),
("label_emb.0.2.weight", "add_embedding.linear_2.weight"),
("label_emb.0.2.bias", "add_embedding.linear_2.bias"),
("input_blocks.0.0.weight", "conv_in.weight"),
("input_blocks.0.0.bias", "conv_in.bias"),
("middle_block_out.0.weight", "controlnet_mid_block.weight"),
("middle_block_out.0.bias", "controlnet_mid_block.bias"),
]
unet_conversion_map_resnet = [
# (stable-diffusion, HF Diffusers)
("in_layers.0", "norm1"),
("in_layers.2", "conv1"),
("out_layers.0", "norm2"),
("out_layers.3", "conv2"),
("emb_layers.1", "time_emb_proj"),
("skip_connection", "conv_shortcut"),
]
unet_conversion_map_layer = []
# hardcoded number of downblocks and resnets/attentions...
# would need smarter logic for other networks.
for i in range(4):
# loop over downblocks/upblocks
for j in range(10):
# loop over resnets/attentions for downblocks
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1."
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op."
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{j}."
sd_mid_res_prefix = f"middle_block.{2*j}."
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
# controlnet specific
controlnet_cond_embedding_names = ['conv_in'] + [f'blocks.{i}' for i in range(6)] + ['conv_out']
for i, hf_prefix in enumerate(controlnet_cond_embedding_names):
hf_prefix = f"controlnet_cond_embedding.{hf_prefix}."
sd_prefix = f"input_hint_block.{i*2}."
unet_conversion_map_layer.append((sd_prefix, hf_prefix))
for i in range(12):
hf_prefix = f"controlnet_down_blocks.{i}."
sd_prefix = f"zero_convs.{i}.0."
unet_conversion_map_layer.append((sd_prefix, hf_prefix))
def _convert_from_diffuser_state_dict(unet_state_dict):
mapping = {k: k for k in unet_state_dict.keys()}
for sd_name, hf_name in unet_conversion_map:
mapping[hf_name] = sd_name
for k, v in mapping.items():
if "resnets" in k:
for sd_part, hf_part in unet_conversion_map_resnet:
v = v.replace(hf_part, sd_part)
mapping[k] = v
for k, v in mapping.items():
for sd_part, hf_part in unet_conversion_map_layer:
v = v.replace(hf_part, sd_part)
mapping[k] = v
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items() if k in unet_state_dict}
return new_state_dict
return _convert_from_diffuser_state_dict(ad_cn_l)
def lora_conversion(file_path, save_path):
state_dict = safetensors.torch.load_file(file_path) if file_path.endswith(".safetensors") else torch.load(file_path)
modified_dict = {convert_mm_name_to_compvis(k): v for k, v in state_dict.items()}
safetensors.torch.save_file(modified_dict, save_path)
print(f"LoRA conversion completed: {save_path}")
def controlnet_conversion(ad_cn_old, ad_cn_new, normal_cn_path):
ad_cn = safetensors.torch.load_file(ad_cn_old) if ad_cn_old.endswith(".safetensors") else torch.load(ad_cn_old)
normal_cn = safetensors.torch.load_file(normal_cn_path)
ad_cn_l, ad_cn_m = {}, {}
for k in ad_cn.keys():
if k.startswith("controlnet_cond_embedding"):
new_key = k.replace("controlnet_cond_embedding.", "input_hint_block.0.")
ad_cn_m[new_key] = ad_cn[k].to(torch.float16)
elif not k in normal_cn:
if "motion_modules" in k:
ad_cn_m[k] = ad_cn[k].to(torch.float16)
else:
raise Exception(f"{k} not in normal_cn")
else:
ad_cn_l[k] = ad_cn[k].to(torch.float16)
ad_cn_l = convert_from_diffuser_state_dict(ad_cn_l)
ad_cn_l.update(ad_cn_m)
safetensors.torch.save_file(ad_cn_l, ad_cn_new)
print(f"ControlNet conversion completed: {ad_cn_new}")
def main():
parser = argparse.ArgumentParser(description="Script to convert LoRA and ControlNet models.")
subparsers = parser.add_subparsers(dest='command')
# LoRA conversion parser
lora_parser = subparsers.add_parser('lora', help='LoRA conversion')
lora_parser.add_argument('file_path', type=str, help='Path to the old LoRA checkpoint')
lora_parser.add_argument('save_path', type=str, help='Path to save the new LoRA checkpoint')
# ControlNet conversion parser
cn_parser = subparsers.add_parser('controlnet', help='ControlNet conversion')
cn_parser.add_argument('ad_cn_old', type=str, help='Path to the old sparse ControlNet checkpoint')
cn_parser.add_argument('ad_cn_new', type=str, help='Path to save the new sparse ControlNet checkpoint')
cn_parser.add_argument('normal_cn_path', type=str, help='Path to the normal ControlNet model')
args = parser.parse_args()
if args.command == 'lora':
lora_conversion(args.file_path, args.save_path)
elif args.command == 'controlnet':
controlnet_conversion(args.ad_cn_old, args.ad_cn_new, args.normal_cn_path)
else:
parser.print_help()
if __name__ == "__main__":
main()