File size: 6,373 Bytes
eb13e79
 
 
196214c
eb13e79
 
 
 
 
 
 
 
 
 
 
196214c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb13e79
 
 
 
d50be5f
eb13e79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196214c
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
language:
- en
license: mit
base_model:
- unsloth/Phi-3-mini-4k-instruct
datasets:
- cognitivecomputations/Dolphin-2.9.2
- teknium/OpenHermes-2.5
- m-a-p/CodeFeedback-Filtered-Instruction
- cognitivecomputations/dolphin-coder
- cognitivecomputations/samantha-data
- microsoft/orca-math-word-problems-200k
- internlm/Agent-FLAN
- cognitivecomputations/SystemChat-2.0
model-index:
- name: dolphin-2.9.2-Phi-3-Medium-abliterated
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 36.13
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=cognitivecomputations/dolphin-2.9.2-Phi-3-Medium-abliterated
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 45.44
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=cognitivecomputations/dolphin-2.9.2-Phi-3-Medium-abliterated
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 12.39
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=cognitivecomputations/dolphin-2.9.2-Phi-3-Medium-abliterated
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 10.4
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=cognitivecomputations/dolphin-2.9.2-Phi-3-Medium-abliterated
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 10.36
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=cognitivecomputations/dolphin-2.9.2-Phi-3-Medium-abliterated
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 38.82
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=cognitivecomputations/dolphin-2.9.2-Phi-3-Medium-abliterated
      name: Open LLM Leaderboard
---

# Dolphin 2.9.2 Phi 3 Medium (Abliterated) 🐬

Curated and trained by Eric Hartford, Lucas Atkins, Fernando Fernandes, and with help from the community of Cognitive Computations  
Uncensored by [FailSpy](https://huggingface.co/failspy)

[![Discord](https://img.shields.io/discord/1156064224225808488?logo=Discord&logoColor=%23ffffff&label=Discord&link=https%3A%2F%2Fdiscord.gg%2FtCMkMDDHwm)](https://discord.gg/cognitivecomputations)
Discord: https://discord.gg/cognitivecomputations

<img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/ldkN1J0WIDQwU4vutGYiD.png" width="600" />

Our appreciation for the sponsor of Dolphin 2.9.2:
- [Crusoe Cloud](https://crusoe.ai/) - provided excellent on-demand 8xL40Snode

This model is based on Phi-3-Medium-Instruct-4k, and is governed by the MIT license with which Microsoft released Phi-3.

Since Microsoft only released the fine-tuned model - Dolphin-2.9.2-Phi-3-Medium has not been entirely cleaned of refusals.

The base model has 4k context, and the qLoRA fine-tuning was with 4k sequence length.

The model's weights were then adjusted to ablate and inhibit refusals based on the methodology described in ['Refusal in LLMs is mediated by a single direction'](https://www.alignmentforum.org/posts/jGuXSZgv6qfdhMCuJ/refusal-in-llms-is-mediated-by-a-single-direction)
This effectively uncensors the model whilst minimizing affecting other features in the model.

It took 3.5 days on 8xL40S node provided by Crusoe Cloud

This model uses the ChatML prompt template.

example:

```
<|im_start|>system
You are Dolphin, a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

```

Dolphin-2.9.2 has a variety of instruction, conversational, and coding skills. It also has initial agentic abilities and supports function calling.
We have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly.


![image/png](https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/3dLaIlx3pVme2jWEtwbNp.png)

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)

## evals:
<img src="https://i.ibb.co/jrBsPLY/file-9gw-A1-Ih-SBYU3-PCZ92-ZNb-Vci-P.png" width="600" />

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_cognitivecomputations__dolphin-2.9.2-Phi-3-Medium-abliterated)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |25.59|
|IFEval (0-Shot)    |36.13|
|BBH (3-Shot)       |45.44|
|MATH Lvl 5 (4-Shot)|12.39|
|GPQA (0-shot)      |10.40|
|MuSR (0-shot)      |10.36|
|MMLU-PRO (5-shot)  |38.82|