code-example
Browse files
README.md
CHANGED
@@ -24,8 +24,6 @@ Install `transformers`
|
|
24 |
pip install transformers accelerate
|
25 |
```
|
26 |
|
27 |
-
**Warning:** The 70B Instruct model has a different prompt template than the smaller versions. We'll update this repo soon.
|
28 |
-
|
29 |
Model capabilities:
|
30 |
|
31 |
- [x] Code completion.
|
@@ -33,6 +31,58 @@ Model capabilities:
|
|
33 |
- [x] Instructions / chat.
|
34 |
- [ ] Python specialist.
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
## Model Details
|
37 |
*Note: Use of this model is governed by the Meta license. Meta developed and publicly released the Code Llama family of large language models (LLMs).
|
38 |
|
|
|
24 |
pip install transformers accelerate
|
25 |
```
|
26 |
|
|
|
|
|
27 |
Model capabilities:
|
28 |
|
29 |
- [x] Code completion.
|
|
|
31 |
- [x] Instructions / chat.
|
32 |
- [ ] Python specialist.
|
33 |
|
34 |
+
**Chat use:** The 70B Instruct model uses a different prompt template than the smaller versions. To use it with `transformers`, we recommend you use the built-in chat template:
|
35 |
+
|
36 |
+
```py
|
37 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
38 |
+
import transformers
|
39 |
+
import torch
|
40 |
+
|
41 |
+
model_id = "codellama/CodeLlama-70b-hf"
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(
|
44 |
+
model_id,
|
45 |
+
torch_dtype=torch.float16
|
46 |
+
).to("cuda")
|
47 |
+
|
48 |
+
chat = [
|
49 |
+
{"role": "system", "content": "You are a helpful and honest code assistant expert in JavaScript. Please, provide all answers to programming questions in JavaScript"},
|
50 |
+
{"role": "user", "content": "Write a function that computes the set of sums of all contiguous sublists of a given list."},
|
51 |
+
]
|
52 |
+
output = model.generate(input_ids=inputs, max_new_tokens=200)
|
53 |
+
output = output[0].to("cpu")
|
54 |
+
print(tokenizer.decode(output)
|
55 |
+
```
|
56 |
+
|
57 |
+
You can also use the model for **text or code completion**. This examples uses transformers' `pipeline` interface:
|
58 |
+
|
59 |
+
```py
|
60 |
+
from transformers import AutoTokenizer
|
61 |
+
import transformers
|
62 |
+
import torch
|
63 |
+
|
64 |
+
model_id = "codellama/CodeLlama-70b-hf"
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
66 |
+
pipeline = transformers.pipeline(
|
67 |
+
"text-generation",
|
68 |
+
model=model_id,
|
69 |
+
torch_dtype=torch.float16,
|
70 |
+
device_map="auto",
|
71 |
+
)
|
72 |
+
|
73 |
+
sequences = pipeline(
|
74 |
+
'def fibonacci(',
|
75 |
+
do_sample=True,
|
76 |
+
temperature=0.2,
|
77 |
+
top_p=0.9,
|
78 |
+
num_return_sequences=1,
|
79 |
+
eos_token_id=tokenizer.eos_token_id,
|
80 |
+
max_length=100,
|
81 |
+
)
|
82 |
+
for seq in sequences:
|
83 |
+
print(f"Result: {seq['generated_text']}")
|
84 |
+
```
|
85 |
+
|
86 |
## Model Details
|
87 |
*Note: Use of this model is governed by the Meta license. Meta developed and publicly released the Code Llama family of large language models (LLMs).
|
88 |
|