codelion commited on
Commit
3b0dd7d
·
verified ·
1 Parent(s): ccd29c7

Add model card with usage instructions

Browse files
Files changed (1) hide show
  1. README.md +72 -177
README.md CHANGED
@@ -1,199 +1,94 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
10
 
 
11
 
12
- ## Model Details
 
 
 
 
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
+ base_model: Qwen/Qwen3-0.6B
3
+ tags:
4
+ - ellora
5
+ - lora
6
+ - quantization
7
+ - accuracy-recovery
8
+ - distillation
9
+ - magpie
10
+ - efficiency
11
+ - peft
12
+ - qwen2
13
+ library_name: peft
14
+ license: apache-2.0
15
+ language:
16
+ - en
17
+ pipeline_tag: text-generation
18
+ inference: false
19
+ model_type: qwen2
20
  ---
21
 
22
+ # codelion/Qwen3-0.6B-accuracy-recovery-lora
23
 
24
+ ## 🎯 Accuracy Recovery LoRA Adapter
25
 
26
+ This LoRA adapter helps recover accuracy when using INT4 quantized versions of Qwen/Qwen3-0.6B.
27
+ It was trained using self-distillation with Magpie-generated data.
28
 
29
+ ## 📊 Performance Metrics
30
 
31
+ - **Base Model**: Qwen/Qwen3-0.6B
32
+ - **Quantization**: INT4 with NF4
33
+ - **LoRA Rank**: 64
34
+ - **LoRA Alpha**: 128
35
+ - **Training Samples**: 610
36
+ - **Target Performance Gap**: <5% perplexity increase
37
 
38
+ ## 🔧 Usage
39
 
40
+ ```python
41
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
42
+ from peft import PeftModel
43
 
44
+ # Load base model with quantization
45
+ quantization_config = BitsAndBytesConfig(
46
+ load_in_4bit=True,
47
+ bnb_4bit_compute_dtype=torch.float16,
48
+ bnb_4bit_use_double_quant=True,
49
+ bnb_4bit_quant_type="nf4"
50
+ )
51
 
52
+ model = AutoModelForCausalLM.from_pretrained(
53
+ "Qwen/Qwen3-0.6B",
54
+ quantization_config=quantization_config,
55
+ device_map="auto"
56
+ )
 
 
57
 
58
+ # Load LoRA adapter
59
+ model = PeftModel.from_pretrained(model, "codelion/Qwen3-0.6B-accuracy-recovery-lora")
60
 
61
+ # Load tokenizer
62
+ tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-0.6B")
63
 
64
+ # Use the model
65
+ inputs = tokenizer("Hello, how are you?", return_tensors="pt")
66
+ outputs = model.generate(**inputs, max_new_tokens=100)
67
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
68
+ print(response)
69
+ ```
70
 
71
+ ## 🧪 Training Details
72
 
73
+ - **Method**: Self-distillation using Magpie data generation
74
+ - **Framework**: PEFT + LoRA
75
+ - **Loss Function**: Combined KL divergence + MSE loss
76
+ - **Temperature**: 1.0
77
+ - **Alpha (distillation weight)**: 0.01
78
 
79
+ ## 📈 Expected Benefits
80
 
81
+ - Maintains accuracy close to FP16 baseline
82
+ - ✅ ~75% reduction in memory usage
83
+ - ✅ 2-3x faster inference than FP16
84
+ - ✅ Easy to integrate with existing workflows
85
 
86
+ ## 🏷️ Related
87
 
88
+ - **Dataset**: [codelion/Qwen3-0.6B-magpie](https://huggingface.co/datasets/codelion/Qwen3-0.6B-magpie)
89
+ - **Base Model**: [Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B)
90
+ - **Framework**: [PEFT](https://github.com/huggingface/peft)
91
 
92
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
+ *This adapter is part of the [Ellora project](https://github.com/codelion/ellora) - standardized recipes for enhancing LLM capabilities.*