--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - bleu - wer model-index: - name: whisper-small-be2en results: [] --- # whisper-small-be2en This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1618 - Bleu: 0.9 - Chrf: 34.0 - Wer: 97.1429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Chrf | Wer | |:-------------:|:-----:|:----:|:---------------:|:----:|:----:|:--------:| | 2.1697 | 1.0 | 1 | 2.1582 | 0.47 | 0.26 | 117.1429 | | 2.1697 | 2.0 | 2 | 0.2310 | 0.0 | 0.0 | 100.0 | | 0.229 | 3.0 | 3 | 0.1618 | 0.9 | 34.0 | 97.1429 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1