Upload 3 files
Browse files- demo/demo.py +58 -0
- demo/test_digit.jpg +0 -0
- mnist-i-jepa.pth +3 -0
demo/demo.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.optim as optim
|
| 4 |
+
from torchvision import transforms
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
|
| 8 |
+
# Define the IJEPAModel (same as before)
|
| 9 |
+
class IJEPAModel(nn.Module):
|
| 10 |
+
def __init__(self, feature_dim=128):
|
| 11 |
+
super(IJEPAModel, self).__init__()
|
| 12 |
+
self.encoder = nn.Sequential(
|
| 13 |
+
nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
|
| 14 |
+
nn.ReLU(),
|
| 15 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
| 16 |
+
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
|
| 17 |
+
nn.ReLU(),
|
| 18 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
| 19 |
+
nn.Flatten(),
|
| 20 |
+
nn.Linear(64 * 7 * 7, feature_dim)
|
| 21 |
+
)
|
| 22 |
+
self.classifier = nn.Linear(feature_dim, 10)
|
| 23 |
+
|
| 24 |
+
def forward(self, x):
|
| 25 |
+
x = self.encoder(x)
|
| 26 |
+
x = self.classifier(x)
|
| 27 |
+
return x
|
| 28 |
+
|
| 29 |
+
# Load the model
|
| 30 |
+
model = IJEPAModel()
|
| 31 |
+
model.load_state_dict(torch.load("mnist-i-jepa.pth"))
|
| 32 |
+
model.eval() # Set the model to evaluation mode
|
| 33 |
+
|
| 34 |
+
# Preprocess the input image (resize, convert to grayscale, normalize)
|
| 35 |
+
transform = transforms.Compose([
|
| 36 |
+
transforms.Grayscale(num_output_channels=1), # Ensure the image is in grayscale
|
| 37 |
+
transforms.Resize((28, 28)), # Resize to MNIST dimensions
|
| 38 |
+
transforms.ToTensor(), # Convert to tensor
|
| 39 |
+
transforms.Normalize((0.5,), (0.5,)) # Normalize the image
|
| 40 |
+
])
|
| 41 |
+
|
| 42 |
+
# Load the test image
|
| 43 |
+
img = Image.open("test_digit.jpg")
|
| 44 |
+
img = transform(img).unsqueeze(0) # Add batch dimension
|
| 45 |
+
|
| 46 |
+
# Predict the digit
|
| 47 |
+
with torch.no_grad(): # Disable gradient computation for inference
|
| 48 |
+
output = model(img)
|
| 49 |
+
_, predicted = torch.max(output, 1)
|
| 50 |
+
|
| 51 |
+
# Display the result
|
| 52 |
+
predicted_digit = predicted.item()
|
| 53 |
+
print(f"Predicted digit: {predicted_digit}")
|
| 54 |
+
|
| 55 |
+
# Optionally, display the image
|
| 56 |
+
plt.imshow(img.squeeze(), cmap='gray')
|
| 57 |
+
plt.title(f"Predicted digit: {predicted_digit}")
|
| 58 |
+
plt.show()
|
demo/test_digit.jpg
ADDED
|
mnist-i-jepa.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:78383f1bc50559f90179f5bb7488998e5cf2643e8f4de5159e30fd9e26488188
|
| 3 |
+
size 1689980
|