cmaeti commited on
Commit
cb0d1d5
·
verified ·
1 Parent(s): 156a112

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -3
README.md CHANGED
@@ -1,3 +1,56 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ ### **MNIST CNN Classifier**
6
+ - Adapted from Pytorch Examples
7
+
8
+ #### **Model Overview**
9
+ - **Model Name**: MNIST CNN Classifier
10
+ - **Model Type**: Convolutional Neural Network (CNN)
11
+ - **Dataset**: MNIST (Modified National Institute of Standards and Technology)
12
+ - A dataset of 70,000 handwritten digits (28x28 grayscale images) of digits 0-9.
13
+ - **Task**: Image classification (Digit recognition)
14
+ - **Framework**: PyTorch
15
+ - **Preprocessing**:
16
+ - Images are normalized and transformed before feeding into the model (e.g., scaling pixel values to a [0, 1] range).
17
+
18
+ #### **Model Architecture**
19
+ - **Input Layer**: 28x28 grayscale images.
20
+ - **Convolutional Layers**:
21
+ - Conv1: 32 filters of size 3x3, applied to the input image (1 channel).
22
+ - Conv2: 64 filters of size 3x3, applied to the output of Conv1.
23
+ - **Activation Functions**:
24
+ - ReLU activations after each convolutional layer.
25
+ - **Pooling Layer**:
26
+ - Max pooling with a 2x2 window after Conv2.
27
+ - **Dropout**:
28
+ - Dropout rate of 25% after the first convolutional layer and 50% after the fully connected layer to prevent overfitting.
29
+ - **Fully Connected Layers**:
30
+ - fc1: A fully connected layer with 128 neurons.
31
+ - fc2: A fully connected layer with 10 output units (one for each digit).
32
+ - **Output**:
33
+ - Log-softmax activation applied to the final layer to produce log-probabilities for the 10 classes.
34
+
35
+ #### **Training Details**
36
+
37
+ - **Batch Size**: (60000)
38
+ - **Epochs**: (14)
39
+ - **Learning Rate**: (1.0 Adadelta)
40
+ - **Hardware Used**: (Google Colab T4 GPU)
41
+
42
+ #### **Performance Metrics**
43
+ - **Training Accuracy**: (99%)
44
+ - **Training Loss**: (0.0273)
45
+
46
+ #### **Usage Instructions**
47
+ - **How to Use**:
48
+ - Clone the repo
49
+ - **Dependencies**:
50
+ - pip install transformers torch torchvision==0.20.0
51
+ - ``` python app.py ```
52
+
53
+ #### **Model Limitations**
54
+ - This model may struggle with noise or distorted images and is trained on relatively clean data.
55
+ - The model is limited to the MNIST digit set and may not perform well on other datasets or noisy, out-of-distribution data.
56
+