Upload 2 files
Browse files- demo/app.py +61 -0
- demo/test_digit.jpg +0 -0
demo/app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from torchvision import transforms
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# Define the model architecture
|
7 |
+
class Net(nn.Module):
|
8 |
+
def __init__(self):
|
9 |
+
super(Net, self).__init__()
|
10 |
+
self.conv1 = nn.Conv2d(1, 32, 3, 1)
|
11 |
+
self.conv2 = nn.Conv2d(32, 64, 3, 1)
|
12 |
+
self.dropout1 = nn.Dropout(0.25)
|
13 |
+
self.dropout2 = nn.Dropout(0.5)
|
14 |
+
self.fc1 = nn.Linear(9216, 128)
|
15 |
+
self.fc2 = nn.Linear(128, 10)
|
16 |
+
|
17 |
+
def forward(self, x):
|
18 |
+
x = self.conv1(x)
|
19 |
+
x = torch.relu(x)
|
20 |
+
x = self.conv2(x)
|
21 |
+
x = torch.relu(x)
|
22 |
+
x = torch.max_pool2d(x, 2)
|
23 |
+
x = self.dropout1(x)
|
24 |
+
x = torch.flatten(x, 1)
|
25 |
+
x = self.fc1(x)
|
26 |
+
x = torch.relu(x)
|
27 |
+
x = self.dropout2(x)
|
28 |
+
x = self.fc2(x)
|
29 |
+
output = torch.log_softmax(x, dim=1)
|
30 |
+
return output
|
31 |
+
|
32 |
+
# Load the trained model
|
33 |
+
model = Net()
|
34 |
+
#model.load_state_dict(torch.load('mnist-cnn.pth')) # Load weights
|
35 |
+
model.load_state_dict(torch.load('mnist-cnn.pth', weights_only=True)) # Load weights
|
36 |
+
|
37 |
+
# Set the model to evaluation mode
|
38 |
+
model.eval()
|
39 |
+
|
40 |
+
# Function to load and preprocess the image
|
41 |
+
def preprocess_image(image_path):
|
42 |
+
img = Image.open(image_path).convert('L') # Convert to grayscale
|
43 |
+
transform = transforms.Compose([
|
44 |
+
transforms.Resize((28, 28)),
|
45 |
+
transforms.ToTensor(),
|
46 |
+
transforms.Normalize((0.1307,), (0.3081,))
|
47 |
+
])
|
48 |
+
img_tensor = transform(img).unsqueeze(0) # Add batch dimension
|
49 |
+
return img_tensor
|
50 |
+
|
51 |
+
# Load and preprocess a new image
|
52 |
+
image_path = "test_digit.jpg" # Replace with your image file path
|
53 |
+
input_image = preprocess_image(image_path)
|
54 |
+
|
55 |
+
# Make the prediction
|
56 |
+
with torch.no_grad():
|
57 |
+
outputs = model(input_image)
|
58 |
+
predicted_class = torch.argmax(outputs, dim=1).item()
|
59 |
+
|
60 |
+
# Output the predicted digit
|
61 |
+
print(f"Predicted digit: {predicted_class}")
|
demo/test_digit.jpg
ADDED
![]() |