Upload 2 files
Browse files- demo/app.py +61 -0
- demo/test_digit.jpg +0 -0
demo/app.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
from torchvision import transforms
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
# Define the model architecture
|
| 7 |
+
class Net(nn.Module):
|
| 8 |
+
def __init__(self):
|
| 9 |
+
super(Net, self).__init__()
|
| 10 |
+
self.conv1 = nn.Conv2d(1, 32, 3, 1)
|
| 11 |
+
self.conv2 = nn.Conv2d(32, 64, 3, 1)
|
| 12 |
+
self.dropout1 = nn.Dropout(0.25)
|
| 13 |
+
self.dropout2 = nn.Dropout(0.5)
|
| 14 |
+
self.fc1 = nn.Linear(9216, 128)
|
| 15 |
+
self.fc2 = nn.Linear(128, 10)
|
| 16 |
+
|
| 17 |
+
def forward(self, x):
|
| 18 |
+
x = self.conv1(x)
|
| 19 |
+
x = torch.relu(x)
|
| 20 |
+
x = self.conv2(x)
|
| 21 |
+
x = torch.relu(x)
|
| 22 |
+
x = torch.max_pool2d(x, 2)
|
| 23 |
+
x = self.dropout1(x)
|
| 24 |
+
x = torch.flatten(x, 1)
|
| 25 |
+
x = self.fc1(x)
|
| 26 |
+
x = torch.relu(x)
|
| 27 |
+
x = self.dropout2(x)
|
| 28 |
+
x = self.fc2(x)
|
| 29 |
+
output = torch.log_softmax(x, dim=1)
|
| 30 |
+
return output
|
| 31 |
+
|
| 32 |
+
# Load the trained model
|
| 33 |
+
model = Net()
|
| 34 |
+
#model.load_state_dict(torch.load('mnist-cnn.pth')) # Load weights
|
| 35 |
+
model.load_state_dict(torch.load('mnist-cnn.pth', weights_only=True)) # Load weights
|
| 36 |
+
|
| 37 |
+
# Set the model to evaluation mode
|
| 38 |
+
model.eval()
|
| 39 |
+
|
| 40 |
+
# Function to load and preprocess the image
|
| 41 |
+
def preprocess_image(image_path):
|
| 42 |
+
img = Image.open(image_path).convert('L') # Convert to grayscale
|
| 43 |
+
transform = transforms.Compose([
|
| 44 |
+
transforms.Resize((28, 28)),
|
| 45 |
+
transforms.ToTensor(),
|
| 46 |
+
transforms.Normalize((0.1307,), (0.3081,))
|
| 47 |
+
])
|
| 48 |
+
img_tensor = transform(img).unsqueeze(0) # Add batch dimension
|
| 49 |
+
return img_tensor
|
| 50 |
+
|
| 51 |
+
# Load and preprocess a new image
|
| 52 |
+
image_path = "test_digit.jpg" # Replace with your image file path
|
| 53 |
+
input_image = preprocess_image(image_path)
|
| 54 |
+
|
| 55 |
+
# Make the prediction
|
| 56 |
+
with torch.no_grad():
|
| 57 |
+
outputs = model(input_image)
|
| 58 |
+
predicted_class = torch.argmax(outputs, dim=1).item()
|
| 59 |
+
|
| 60 |
+
# Output the predicted digit
|
| 61 |
+
print(f"Predicted digit: {predicted_class}")
|
demo/test_digit.jpg
ADDED
|