Upload trained CrossEncoder model for job description ranking
Browse files- README.md +309 -0
- config.json +35 -0
- model.safetensors +3 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +65 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- cross-encoder
|
5 |
+
- generated_from_trainer
|
6 |
+
- dataset_size:100
|
7 |
+
- loss:BinaryCrossEntropyLoss
|
8 |
+
base_model: cross-encoder/ms-marco-MiniLM-L4-v2
|
9 |
+
pipeline_tag: text-ranking
|
10 |
+
library_name: sentence-transformers
|
11 |
+
---
|
12 |
+
|
13 |
+
# CrossEncoder based on cross-encoder/ms-marco-MiniLM-L4-v2
|
14 |
+
|
15 |
+
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [cross-encoder/ms-marco-MiniLM-L4-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L4-v2) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
|
16 |
+
|
17 |
+
## Model Details
|
18 |
+
|
19 |
+
### Model Description
|
20 |
+
- **Model Type:** Cross Encoder
|
21 |
+
- **Base model:** [cross-encoder/ms-marco-MiniLM-L4-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L4-v2) <!-- at revision d19c7578cd190e674bda2b51052768e43b61e747 -->
|
22 |
+
- **Maximum Sequence Length:** 512 tokens
|
23 |
+
- **Number of Output Labels:** 1 label
|
24 |
+
<!-- - **Training Dataset:** Unknown -->
|
25 |
+
<!-- - **Language:** Unknown -->
|
26 |
+
<!-- - **License:** Unknown -->
|
27 |
+
|
28 |
+
### Model Sources
|
29 |
+
|
30 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
31 |
+
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
|
32 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
33 |
+
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
|
34 |
+
|
35 |
+
## Usage
|
36 |
+
|
37 |
+
### Direct Usage (Sentence Transformers)
|
38 |
+
|
39 |
+
First install the Sentence Transformers library:
|
40 |
+
|
41 |
+
```bash
|
42 |
+
pip install -U sentence-transformers
|
43 |
+
```
|
44 |
+
|
45 |
+
Then you can load this model and run inference.
|
46 |
+
```python
|
47 |
+
from sentence_transformers import CrossEncoder
|
48 |
+
|
49 |
+
# Download from the 🤗 Hub
|
50 |
+
model = CrossEncoder("clturner23/cross_encoder_trained_model")
|
51 |
+
# Get scores for pairs of texts
|
52 |
+
pairs = [
|
53 |
+
['accountant', 'Graphic designer creating logos.'],
|
54 |
+
['software engineer', 'UX designer creating user interfaces.'],
|
55 |
+
['accountant', 'Payroll clerk processing salaries.'],
|
56 |
+
['architect', 'Structural engineer analyzing designs.'],
|
57 |
+
['software engineer', 'Database administrator optimizing SQL queries.'],
|
58 |
+
]
|
59 |
+
scores = model.predict(pairs)
|
60 |
+
print(scores.shape)
|
61 |
+
# (5,)
|
62 |
+
|
63 |
+
# Or rank different texts based on similarity to a single text
|
64 |
+
ranks = model.rank(
|
65 |
+
'accountant',
|
66 |
+
[
|
67 |
+
'Graphic designer creating logos.',
|
68 |
+
'UX designer creating user interfaces.',
|
69 |
+
'Payroll clerk processing salaries.',
|
70 |
+
'Structural engineer analyzing designs.',
|
71 |
+
'Database administrator optimizing SQL queries.',
|
72 |
+
]
|
73 |
+
)
|
74 |
+
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
|
75 |
+
```
|
76 |
+
|
77 |
+
<!--
|
78 |
+
### Direct Usage (Transformers)
|
79 |
+
|
80 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
81 |
+
|
82 |
+
</details>
|
83 |
+
-->
|
84 |
+
|
85 |
+
<!--
|
86 |
+
### Downstream Usage (Sentence Transformers)
|
87 |
+
|
88 |
+
You can finetune this model on your own dataset.
|
89 |
+
|
90 |
+
<details><summary>Click to expand</summary>
|
91 |
+
|
92 |
+
</details>
|
93 |
+
-->
|
94 |
+
|
95 |
+
<!--
|
96 |
+
### Out-of-Scope Use
|
97 |
+
|
98 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
99 |
+
-->
|
100 |
+
|
101 |
+
<!--
|
102 |
+
## Bias, Risks and Limitations
|
103 |
+
|
104 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
105 |
+
-->
|
106 |
+
|
107 |
+
<!--
|
108 |
+
### Recommendations
|
109 |
+
|
110 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
111 |
+
-->
|
112 |
+
|
113 |
+
## Training Details
|
114 |
+
|
115 |
+
### Training Dataset
|
116 |
+
|
117 |
+
#### Unnamed Dataset
|
118 |
+
|
119 |
+
* Size: 100 training samples
|
120 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
121 |
+
* Approximate statistics based on the first 100 samples:
|
122 |
+
| | sentence_0 | sentence_1 | label |
|
123 |
+
|:--------|:--------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
124 |
+
| type | string | string | float |
|
125 |
+
| details | <ul><li>min: 4 characters</li><li>mean: 8.5 characters</li><li>max: 17 characters</li></ul> | <ul><li>min: 21 characters</li><li>mean: 37.98 characters</li><li>max: 71 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.55</li><li>max: 1.0</li></ul> |
|
126 |
+
* Samples:
|
127 |
+
| sentence_0 | sentence_1 | label |
|
128 |
+
|:-------------------------------|:---------------------------------------------------|:-----------------|
|
129 |
+
| <code>accountant</code> | <code>Graphic designer creating logos.</code> | <code>0.0</code> |
|
130 |
+
| <code>software engineer</code> | <code>UX designer creating user interfaces.</code> | <code>0.0</code> |
|
131 |
+
| <code>accountant</code> | <code>Payroll clerk processing salaries.</code> | <code>1.0</code> |
|
132 |
+
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
|
133 |
+
```json
|
134 |
+
{
|
135 |
+
"activation_fn": "torch.nn.modules.linear.Identity",
|
136 |
+
"pos_weight": null
|
137 |
+
}
|
138 |
+
```
|
139 |
+
|
140 |
+
### Training Hyperparameters
|
141 |
+
#### Non-Default Hyperparameters
|
142 |
+
|
143 |
+
- `per_device_train_batch_size`: 4
|
144 |
+
- `per_device_eval_batch_size`: 4
|
145 |
+
- `num_train_epochs`: 10
|
146 |
+
|
147 |
+
#### All Hyperparameters
|
148 |
+
<details><summary>Click to expand</summary>
|
149 |
+
|
150 |
+
- `overwrite_output_dir`: False
|
151 |
+
- `do_predict`: False
|
152 |
+
- `eval_strategy`: no
|
153 |
+
- `prediction_loss_only`: True
|
154 |
+
- `per_device_train_batch_size`: 4
|
155 |
+
- `per_device_eval_batch_size`: 4
|
156 |
+
- `per_gpu_train_batch_size`: None
|
157 |
+
- `per_gpu_eval_batch_size`: None
|
158 |
+
- `gradient_accumulation_steps`: 1
|
159 |
+
- `eval_accumulation_steps`: None
|
160 |
+
- `torch_empty_cache_steps`: None
|
161 |
+
- `learning_rate`: 5e-05
|
162 |
+
- `weight_decay`: 0.0
|
163 |
+
- `adam_beta1`: 0.9
|
164 |
+
- `adam_beta2`: 0.999
|
165 |
+
- `adam_epsilon`: 1e-08
|
166 |
+
- `max_grad_norm`: 1
|
167 |
+
- `num_train_epochs`: 10
|
168 |
+
- `max_steps`: -1
|
169 |
+
- `lr_scheduler_type`: linear
|
170 |
+
- `lr_scheduler_kwargs`: {}
|
171 |
+
- `warmup_ratio`: 0.0
|
172 |
+
- `warmup_steps`: 0
|
173 |
+
- `log_level`: passive
|
174 |
+
- `log_level_replica`: warning
|
175 |
+
- `log_on_each_node`: True
|
176 |
+
- `logging_nan_inf_filter`: True
|
177 |
+
- `save_safetensors`: True
|
178 |
+
- `save_on_each_node`: False
|
179 |
+
- `save_only_model`: False
|
180 |
+
- `restore_callback_states_from_checkpoint`: False
|
181 |
+
- `no_cuda`: False
|
182 |
+
- `use_cpu`: False
|
183 |
+
- `use_mps_device`: False
|
184 |
+
- `seed`: 42
|
185 |
+
- `data_seed`: None
|
186 |
+
- `jit_mode_eval`: False
|
187 |
+
- `use_ipex`: False
|
188 |
+
- `bf16`: False
|
189 |
+
- `fp16`: False
|
190 |
+
- `fp16_opt_level`: O1
|
191 |
+
- `half_precision_backend`: auto
|
192 |
+
- `bf16_full_eval`: False
|
193 |
+
- `fp16_full_eval`: False
|
194 |
+
- `tf32`: None
|
195 |
+
- `local_rank`: 0
|
196 |
+
- `ddp_backend`: None
|
197 |
+
- `tpu_num_cores`: None
|
198 |
+
- `tpu_metrics_debug`: False
|
199 |
+
- `debug`: []
|
200 |
+
- `dataloader_drop_last`: False
|
201 |
+
- `dataloader_num_workers`: 0
|
202 |
+
- `dataloader_prefetch_factor`: None
|
203 |
+
- `past_index`: -1
|
204 |
+
- `disable_tqdm`: False
|
205 |
+
- `remove_unused_columns`: True
|
206 |
+
- `label_names`: None
|
207 |
+
- `load_best_model_at_end`: False
|
208 |
+
- `ignore_data_skip`: False
|
209 |
+
- `fsdp`: []
|
210 |
+
- `fsdp_min_num_params`: 0
|
211 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
212 |
+
- `tp_size`: 0
|
213 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
214 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
215 |
+
- `deepspeed`: None
|
216 |
+
- `label_smoothing_factor`: 0.0
|
217 |
+
- `optim`: adamw_torch
|
218 |
+
- `optim_args`: None
|
219 |
+
- `adafactor`: False
|
220 |
+
- `group_by_length`: False
|
221 |
+
- `length_column_name`: length
|
222 |
+
- `ddp_find_unused_parameters`: None
|
223 |
+
- `ddp_bucket_cap_mb`: None
|
224 |
+
- `ddp_broadcast_buffers`: False
|
225 |
+
- `dataloader_pin_memory`: True
|
226 |
+
- `dataloader_persistent_workers`: False
|
227 |
+
- `skip_memory_metrics`: True
|
228 |
+
- `use_legacy_prediction_loop`: False
|
229 |
+
- `push_to_hub`: False
|
230 |
+
- `resume_from_checkpoint`: None
|
231 |
+
- `hub_model_id`: None
|
232 |
+
- `hub_strategy`: every_save
|
233 |
+
- `hub_private_repo`: None
|
234 |
+
- `hub_always_push`: False
|
235 |
+
- `gradient_checkpointing`: False
|
236 |
+
- `gradient_checkpointing_kwargs`: None
|
237 |
+
- `include_inputs_for_metrics`: False
|
238 |
+
- `include_for_metrics`: []
|
239 |
+
- `eval_do_concat_batches`: True
|
240 |
+
- `fp16_backend`: auto
|
241 |
+
- `push_to_hub_model_id`: None
|
242 |
+
- `push_to_hub_organization`: None
|
243 |
+
- `mp_parameters`:
|
244 |
+
- `auto_find_batch_size`: False
|
245 |
+
- `full_determinism`: False
|
246 |
+
- `torchdynamo`: None
|
247 |
+
- `ray_scope`: last
|
248 |
+
- `ddp_timeout`: 1800
|
249 |
+
- `torch_compile`: False
|
250 |
+
- `torch_compile_backend`: None
|
251 |
+
- `torch_compile_mode`: None
|
252 |
+
- `include_tokens_per_second`: False
|
253 |
+
- `include_num_input_tokens_seen`: False
|
254 |
+
- `neftune_noise_alpha`: None
|
255 |
+
- `optim_target_modules`: None
|
256 |
+
- `batch_eval_metrics`: False
|
257 |
+
- `eval_on_start`: False
|
258 |
+
- `use_liger_kernel`: False
|
259 |
+
- `eval_use_gather_object`: False
|
260 |
+
- `average_tokens_across_devices`: False
|
261 |
+
- `prompts`: None
|
262 |
+
- `batch_sampler`: batch_sampler
|
263 |
+
- `multi_dataset_batch_sampler`: proportional
|
264 |
+
|
265 |
+
</details>
|
266 |
+
|
267 |
+
### Framework Versions
|
268 |
+
- Python: 3.11.12
|
269 |
+
- Sentence Transformers: 4.1.0
|
270 |
+
- Transformers: 4.51.3
|
271 |
+
- PyTorch: 2.6.0+cu124
|
272 |
+
- Accelerate: 1.6.0
|
273 |
+
- Datasets: 2.14.4
|
274 |
+
- Tokenizers: 0.21.1
|
275 |
+
|
276 |
+
## Citation
|
277 |
+
|
278 |
+
### BibTeX
|
279 |
+
|
280 |
+
#### Sentence Transformers
|
281 |
+
```bibtex
|
282 |
+
@inproceedings{reimers-2019-sentence-bert,
|
283 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
284 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
285 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
286 |
+
month = "11",
|
287 |
+
year = "2019",
|
288 |
+
publisher = "Association for Computational Linguistics",
|
289 |
+
url = "https://arxiv.org/abs/1908.10084",
|
290 |
+
}
|
291 |
+
```
|
292 |
+
|
293 |
+
<!--
|
294 |
+
## Glossary
|
295 |
+
|
296 |
+
*Clearly define terms in order to be accessible across audiences.*
|
297 |
+
-->
|
298 |
+
|
299 |
+
<!--
|
300 |
+
## Model Card Authors
|
301 |
+
|
302 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
303 |
+
-->
|
304 |
+
|
305 |
+
<!--
|
306 |
+
## Model Card Contact
|
307 |
+
|
308 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
309 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForSequenceClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"gradient_checkpointing": false,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 1536,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 4,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"sentence_transformers": {
|
27 |
+
"activation_fn": "torch.nn.modules.linear.Identity",
|
28 |
+
"version": "4.1.0"
|
29 |
+
},
|
30 |
+
"torch_dtype": "float32",
|
31 |
+
"transformers_version": "4.51.3",
|
32 |
+
"type_vocab_size": 2,
|
33 |
+
"use_cache": true,
|
34 |
+
"vocab_size": 30522
|
35 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b7b05f4293de9fa37ff63372d7a27400a4cd338ae4f49a6b3ff667e4cd694cd
|
3 |
+
size 76667004
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"max_length": 512,
|
51 |
+
"model_max_length": 512,
|
52 |
+
"never_split": null,
|
53 |
+
"pad_to_multiple_of": null,
|
54 |
+
"pad_token": "[PAD]",
|
55 |
+
"pad_token_type_id": 0,
|
56 |
+
"padding_side": "right",
|
57 |
+
"sep_token": "[SEP]",
|
58 |
+
"stride": 0,
|
59 |
+
"strip_accents": null,
|
60 |
+
"tokenize_chinese_chars": true,
|
61 |
+
"tokenizer_class": "BertTokenizer",
|
62 |
+
"truncation_side": "right",
|
63 |
+
"truncation_strategy": "longest_first",
|
64 |
+
"unk_token": "[UNK]"
|
65 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|