clincolnoz commited on
Commit
c831c73
·
1 Parent(s): ce38d01

v0.96 state at 96 epochs

Browse files
Files changed (7) hide show
  1. README.md +35 -35
  2. optimizer.pt +1 -1
  3. pytorch_model.bin +1 -1
  4. rng_state.pth +1 -1
  5. scaler.pt +1 -1
  6. scheduler.pt +1 -1
  7. trainer_state.json +0 -0
README.md CHANGED
@@ -84,26 +84,26 @@ You can use this model directly with a pipeline for masked language modeling:
84
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
85
  >>> unmasker("Hello I'm a [MASK] model.")
86
 
87
- [{'score': 0.7266589999198914,
88
  'token': 3287,
89
  'token_str': 'male',
90
  'sequence': "hello i'm a male model."},
91
- {'score': 0.11684177070856094,
92
- 'token': 10516,
93
- 'token_str': 'fitness',
94
- 'sequence': "hello i'm a fitness model."},
95
- {'score': 0.10674988478422165,
96
  'token': 4827,
97
  'token_str': 'fashion',
98
  'sequence': "hello i'm a fashion model."},
99
- {'score': 0.006339235231280327,
 
 
 
 
100
  'token': 3565,
101
  'token_str': 'super',
102
  'sequence': "hello i'm a super model."},
103
- {'score': 0.006151702255010605,
104
- 'token': 2931,
105
- 'token_str': 'female',
106
- 'sequence': "hello i'm a female model."}]
107
  ```
108
 
109
  Here is how to use this model to get the features of a given text in PyTorch:
@@ -112,11 +112,11 @@ Here is how to use this model to get the features of a given text in PyTorch:
112
  from transformers import BertTokenizer, BertModel
113
  tokenizer = BertTokenizer.from_pretrained(
114
  'clincolnoz/MoreSexistBERT',
115
- revision='v1.00' # tag name, or branch name, or commit hash
116
  )
117
  model = BertModel.from_pretrained(
118
  'clincolnoz/MoreSexistBERT',
119
- revision='v1.00' # tag name, or branch name, or commit hash
120
  )
121
  text = "Replace me by any text you'd like."
122
  encoded_input = tokenizer(text, return_tensors='pt')
@@ -129,12 +129,12 @@ and in TensorFlow:
129
  from transformers import BertTokenizer, TFBertModel
130
  tokenizer = BertTokenizer.from_pretrained(
131
  'clincolnoz/MoreSexistBERT',
132
- revision='v1.00' # tag name, or branch name, or commit hash
133
  )
134
  model = TFBertModel.from_pretrained(
135
  'clincolnoz/MoreSexistBERT',
136
  from_pt=True,
137
- revision='v1.00' # tag name, or branch name, or commit hash
138
  )
139
  text = "Replace me by any text you'd like."
140
  encoded_input = tokenizer(text, return_tensors='tf')
@@ -151,49 +151,49 @@ neutral, this model can have biased predictions:
151
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
152
  >>> unmasker("The man worked as a [MASK].")
153
 
154
- [{'score': 0.1325998157262802,
 
 
 
 
155
  'token': 2158,
156
  'token_str': 'man',
157
  'sequence': 'the man worked as a man.'},
158
- {'score': 0.0707506611943245,
159
  'token': 6821,
160
  'token_str': 'nurse',
161
  'sequence': 'the man worked as a nurse.'},
162
- {'score': 0.06894320249557495,
163
- 'token': 10850,
164
- 'token_str': 'maid',
165
- 'sequence': 'the man worked as a maid.'},
166
- {'score': 0.058711662888526917,
167
  'token': 2450,
168
  'token_str': 'woman',
169
  'sequence': 'the man worked as a woman.'},
170
- {'score': 0.051284290850162506,
171
  'token': 19215,
172
  'token_str': 'prostitute',
173
  'sequence': 'the man worked as a prostitute.'}]
174
 
175
  >>> unmasker("The woman worked as a [MASK].")
176
 
177
- [{'score': 0.2473229616880417,
178
  'token': 6821,
179
  'token_str': 'nurse',
180
  'sequence': 'the woman worked as a nurse.'},
181
- {'score': 0.13260887563228607,
 
 
 
 
 
 
 
 
182
  'token': 19215,
183
  'token_str': 'prostitute',
184
  'sequence': 'the woman worked as a prostitute.'},
185
- {'score': 0.0784914642572403,
186
  'token': 3187,
187
  'token_str': 'secretary',
188
- 'sequence': 'the woman worked as a secretary.'},
189
- {'score': 0.06911644339561462,
190
- 'token': 5160,
191
- 'token_str': 'lawyer',
192
- 'sequence': 'the woman worked as a lawyer.'},
193
- {'score': 0.03299284353852272,
194
- 'token': 2158,
195
- 'token_str': 'man',
196
- 'sequence': 'the woman worked as a man.'}]
197
  ```
198
 
199
  This bias may also affect all fine-tuned versions of this model.
 
84
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
85
  >>> unmasker("Hello I'm a [MASK] model.")
86
 
87
+ [{'score': 0.7104076147079468,
88
  'token': 3287,
89
  'token_str': 'male',
90
  'sequence': "hello i'm a male model."},
91
+ {'score': 0.10377809405326843,
 
 
 
 
92
  'token': 4827,
93
  'token_str': 'fashion',
94
  'sequence': "hello i'm a fashion model."},
95
+ {'score': 0.05958019942045212,
96
+ 'token': 10516,
97
+ 'token_str': 'fitness',
98
+ 'sequence': "hello i'm a fitness model."},
99
+ {'score': 0.021784959360957146,
100
  'token': 3565,
101
  'token_str': 'super',
102
  'sequence': "hello i'm a super model."},
103
+ {'score': 0.012497838586568832,
104
+ 'token': 9271,
105
+ 'token_str': 'runway',
106
+ 'sequence': "hello i'm a runway model."}]
107
  ```
108
 
109
  Here is how to use this model to get the features of a given text in PyTorch:
 
112
  from transformers import BertTokenizer, BertModel
113
  tokenizer = BertTokenizer.from_pretrained(
114
  'clincolnoz/MoreSexistBERT',
115
+ revision='v0.96' # tag name, or branch name, or commit hash
116
  )
117
  model = BertModel.from_pretrained(
118
  'clincolnoz/MoreSexistBERT',
119
+ revision='v0.96' # tag name, or branch name, or commit hash
120
  )
121
  text = "Replace me by any text you'd like."
122
  encoded_input = tokenizer(text, return_tensors='pt')
 
129
  from transformers import BertTokenizer, TFBertModel
130
  tokenizer = BertTokenizer.from_pretrained(
131
  'clincolnoz/MoreSexistBERT',
132
+ revision='v0.96' # tag name, or branch name, or commit hash
133
  )
134
  model = TFBertModel.from_pretrained(
135
  'clincolnoz/MoreSexistBERT',
136
  from_pt=True,
137
+ revision='v0.96' # tag name, or branch name, or commit hash
138
  )
139
  text = "Replace me by any text you'd like."
140
  encoded_input = tokenizer(text, return_tensors='tf')
 
151
  >>> unmasker = pipeline('fill-mask', model='clincolnoz/MoreSexistBERT')
152
  >>> unmasker("The man worked as a [MASK].")
153
 
154
+ [{'score': 0.23729275166988373,
155
+ 'token': 10850,
156
+ 'token_str': 'maid',
157
+ 'sequence': 'the man worked as a maid.'},
158
+ {'score': 0.09351691603660583,
159
  'token': 2158,
160
  'token_str': 'man',
161
  'sequence': 'the man worked as a man.'},
162
+ {'score': 0.07249398529529572,
163
  'token': 6821,
164
  'token_str': 'nurse',
165
  'sequence': 'the man worked as a nurse.'},
166
+ {'score': 0.033836521208286285,
 
 
 
 
167
  'token': 2450,
168
  'token_str': 'woman',
169
  'sequence': 'the man worked as a woman.'},
170
+ {'score': 0.030043436214327812,
171
  'token': 19215,
172
  'token_str': 'prostitute',
173
  'sequence': 'the man worked as a prostitute.'}]
174
 
175
  >>> unmasker("The woman worked as a [MASK].")
176
 
177
+ [{'score': 0.1972629576921463,
178
  'token': 6821,
179
  'token_str': 'nurse',
180
  'sequence': 'the woman worked as a nurse.'},
181
+ {'score': 0.18841354548931122,
182
+ 'token': 10850,
183
+ 'token_str': 'maid',
184
+ 'sequence': 'the woman worked as a maid.'},
185
+ {'score': 0.07627478241920471,
186
+ 'token': 5160,
187
+ 'token_str': 'lawyer',
188
+ 'sequence': 'the woman worked as a lawyer.'},
189
+ {'score': 0.0645599514245987,
190
  'token': 19215,
191
  'token_str': 'prostitute',
192
  'sequence': 'the woman worked as a prostitute.'},
193
+ {'score': 0.03376419469714165,
194
  'token': 3187,
195
  'token_str': 'secretary',
196
+ 'sequence': 'the woman worked as a secretary.'}]
 
 
 
 
 
 
 
 
197
  ```
198
 
199
  This bias may also affect all fine-tuned versions of this model.
optimizer.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:465f63330110a7d7be88e2fb10f2ae1dd04f0f1bf60bac445b56012942fffc62
3
  size 882547461
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2f7aed7bd67b678d63658550ad0702571dd0978870c4067144b3df8d77ce8f0
3
  size 882547461
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a553b46f774812474639ee9fe66f2e7e0da7ebed753756225ee96d29005cf9cc
3
  size 441287881
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f642498479b7c9c3f75d6652fbc16915034a23d8a3ac5cf0183083275154603d
3
  size 441287881
rng_state.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0a0ad2662cde0622ce3ceab7209a63a579dd252c6c3f4d9eb2929f7b03f0dbca
3
  size 14575
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb07d7aa5c0efe55bcccae4f46f6dad92c5e9e0a206a08cacbdd5c383839f90b
3
  size 14575
scaler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:01393b1fde6c34e63b141ec84487c130211974912da632d3c3a858d41a6fd232
3
  size 557
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69efab29407ccdcdba11c1af3454119972811b6f7749a0381d1f1db86a52c289
3
  size 557
scheduler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e781834fdbf15d8793623b704912fb84b816ab10e51fde93c21c5f241dfa8f5e
3
  size 627
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d10b7caca924f8599e0140a80ff49b6f0cf9b96a0cbbc79f659ad09b0ad6912d
3
  size 627
trainer_state.json CHANGED
The diff for this file is too large to render. See raw diff