File size: 2,506 Bytes
de1aa6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---

library_name: transformers
license: mit
base_model: almanach/camembert-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_awesome_wnut_model
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_wnut_model



This model is a fine-tuned version of [almanach/camembert-base](https://huggingface.co/almanach/camembert-base) on the None dataset.

It achieves the following results on the evaluation set:

- Loss: 0.0159

- Precision: 0.0

- Recall: 0.0

- F1: 0.0

- Accuracy: 0.9970



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10



### Training results



| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1  | Accuracy |

|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|

| No log        | 1.0   | 160  | 0.1652          | 0.0       | 0.0    | 0.0 | 0.9528   |

| No log        | 2.0   | 320  | 0.0499          | 0.0       | 0.0    | 0.0 | 0.9943   |

| No log        | 3.0   | 480  | 0.0303          | 0.0       | 0.0    | 0.0 | 0.9960   |

| 0.1412        | 4.0   | 640  | 0.0239          | 0.0       | 0.0    | 0.0 | 0.9967   |

| 0.1412        | 5.0   | 800  | 0.0206          | 0.0       | 0.0    | 0.0 | 0.9968   |

| 0.1412        | 6.0   | 960  | 0.0186          | 0.0       | 0.0    | 0.0 | 0.9969   |

| 0.0254        | 7.0   | 1120 | 0.0173          | 0.0       | 0.0    | 0.0 | 0.9970   |

| 0.0254        | 8.0   | 1280 | 0.0165          | 0.0       | 0.0    | 0.0 | 0.9970   |

| 0.0254        | 9.0   | 1440 | 0.0161          | 0.0       | 0.0    | 0.0 | 0.9970   |

| 0.0184        | 10.0  | 1600 | 0.0159          | 0.0       | 0.0    | 0.0 | 0.9970   |





### Framework versions



- Transformers 4.46.2

- Pytorch 2.5.1+cu118

- Datasets 3.1.0

- Tokenizers 0.20.3