Update README.md
Browse files
README.md
CHANGED
@@ -1,63 +1,119 @@
|
|
1 |
-
---
|
2 |
-
library_name: transformers
|
3 |
-
license: apache-2.0
|
4 |
-
base_model: answerdotai/ModernBERT-base
|
5 |
-
tags:
|
6 |
-
- generated_from_trainer
|
7 |
-
metrics:
|
8 |
-
- accuracy
|
9 |
-
model-index:
|
10 |
-
- name: Fin-ModernBERT
|
11 |
-
results: []
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
should probably proofread and complete it, then remove this comment. -->
|
16 |
|
|
|
17 |
# Fin-ModernBERT
|
18 |
|
19 |
-
|
20 |
-
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 0.8678
|
22 |
-
- Accuracy: 0.8045
|
23 |
|
24 |
-
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
|
|
|
|
31 |
|
32 |
-
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
|
|
|
|
37 |
|
38 |
-
|
|
|
|
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
-
- learning_rate: 0.0002
|
42 |
-
- train_batch_size: 24
|
43 |
-
- eval_batch_size: 24
|
44 |
-
- seed: 0
|
45 |
-
- gradient_accumulation_steps: 128
|
46 |
-
- total_train_batch_size: 3072
|
47 |
-
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
48 |
-
- lr_scheduler_type: linear
|
49 |
-
- num_epochs: 1
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
55 |
-
| 0.8497 | 1.0 | 7325 | 0.8678 | 0.8045 |
|
56 |
|
|
|
57 |
|
58 |
-
|
59 |
|
60 |
-
|
61 |
-
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: answerdotai/ModernBERT-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: Fin-ModernBERT
|
11 |
+
results: []
|
12 |
+
datasets:
|
13 |
+
- clapAI/FinData-dedup
|
14 |
+
language:
|
15 |
+
- en
|
16 |
+
pipeline_tag: fill-mask
|
17 |
+
---
|
18 |
|
19 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
20 |
should probably proofread and complete it, then remove this comment. -->
|
21 |
|
22 |
+
|
23 |
# Fin-ModernBERT
|
24 |
|
25 |
+
Fin-ModernBERT is a domain-adapted pretrained language model for the **financial domain**, obtained by continual pretraining of [ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) with a **context length of 1024 tokens** on large-scale finance-related corpora.
|
|
|
|
|
|
|
26 |
|
27 |
+
---
|
28 |
|
29 |
+
## Model Description
|
30 |
|
31 |
+
- **Base model:** ModernBERT-base (context length = 1024)
|
32 |
+
- **Domain:** Finance, Stock Market, Cryptocurrency
|
33 |
+
- **Objective:** Improve representation and understanding of financial text for downstream NLP tasks (sentiment analysis, NER, classification, QA, retrieval, etc.)
|
34 |
|
35 |
+
---
|
36 |
+
|
37 |
+
## Training Data
|
38 |
|
39 |
+
We collected and combined multiple publicly available finance-related datasets, including:
|
40 |
|
41 |
+
- [danidanou/Bloomberg_Financial_News](https://huggingface.co/datasets/danidanou/Bloomberg_Financial_News)
|
42 |
+
- [juanberasategui/Crypto_Tweets](https://huggingface.co/datasets/juanberasategui/Crypto_Tweets)
|
43 |
+
- [StephanAkkerman/crypto-stock-tweets](https://huggingface.co/datasets/StephanAkkerman/crypto-stock-tweets)
|
44 |
+
- [SahandNZ/cryptonews-articles-with-price-momentum-labels](https://huggingface.co/datasets/SahandNZ/cryptonews-articles-with-price-momentum-labels)
|
45 |
+
- [edaschau/financial_news](https://huggingface.co/datasets/edaschau/financial_news)
|
46 |
+
- [sabareesh88/FNSPID_nasdaq](https://huggingface.co/datasets/sabareesh88/FNSPID_nasdaq)
|
47 |
+
- [BAAI/IndustryCorpus_finance](https://huggingface.co/datasets/BAAI/IndustryCorpus_finance)
|
48 |
+
- [mjw/stock_market_tweets](https://huggingface.co/datasets/mjw/stock_market_tweets)
|
49 |
|
50 |
+
After aggregation, we obtained **~50M financial records**.
|
51 |
+
A deduplication process reduced this to **~20M records**, available at:
|
52 |
+
👉 [clapAI/FinData-dedup](https://huggingface.co/datasets/clapAI/FinData-dedup)
|
53 |
|
54 |
+
---
|
55 |
+
|
56 |
+
## Training Hyperparameters
|
57 |
|
58 |
The following hyperparameters were used during training:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
- **Learning rate:** 2e-4
|
61 |
+
- **Train batch size:** 24
|
62 |
+
- **Eval batch size:** 24
|
63 |
+
- **Seed:** 0
|
64 |
+
- **Gradient accumulation steps:** 128
|
65 |
+
- **Effective total train batch size:** 3072
|
66 |
+
- **Optimizer:** `AdamW_Torch_Fused` with betas=(0.9, 0.999), epsilon=1e-08
|
67 |
+
- **LR scheduler:** Linear
|
68 |
+
- **Epochs:** 1
|
69 |
+
|
70 |
+
---
|
71 |
+
|
72 |
+
## Evaluation Benchmarks
|
73 |
+
|
74 |
+
We evaluated **Fin-ModernBERT** on financial NLP benchmarks and compared it against general-purpose pretrained models:
|
75 |
+
|
76 |
+
Updating
|
77 |
+
|
78 |
+
|
79 |
+
---
|
80 |
+
|
81 |
+
## Use Cases
|
82 |
+
|
83 |
+
Fin-ModernBERT can be used for various financial NLP applications, such as:
|
84 |
+
|
85 |
+
- **Financial Sentiment Analysis** (e.g., market mood detection from news/tweets)
|
86 |
+
- **Event-driven Stock Prediction**
|
87 |
+
- **Financial Named Entity Recognition (NER)** (companies, tickers, financial instruments)
|
88 |
+
- **Document Classification & Clustering**
|
89 |
+
- **Question Answering over financial reports and news**
|
90 |
+
|
91 |
+
---
|
92 |
+
|
93 |
+
## How to Use
|
94 |
+
|
95 |
+
```python
|
96 |
+
from transformers import AutoTokenizer, AutoModel
|
97 |
+
|
98 |
+
model_name = "clapAI/Fin-ModernBERT"
|
99 |
+
|
100 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
101 |
+
model = AutoModel.from_pretrained(model_name)
|
102 |
+
|
103 |
+
text = "Federal Reserve hints at possible interest rate cuts."
|
104 |
+
inputs = tokenizer(text, return_tensors="pt")
|
105 |
+
outputs = model(**inputs)
|
106 |
|
107 |
+
```
|
|
|
|
|
108 |
|
109 |
+
## Citation
|
110 |
|
111 |
+
If you use this model, please cite:
|
112 |
|
113 |
+
```@misc{finmodernbert2025,
|
114 |
+
title={Fin-ModernBERT: Continual Pretraining of ModernBERT for Financial Domain},
|
115 |
+
author={ClapAI},
|
116 |
+
year={2025},
|
117 |
+
publisher={Hugging Face},
|
118 |
+
howpublished={\url{https://huggingface.co/clapAI/Fin-ModernBERT}}
|
119 |
+
}
|