elsayuhd / elsayuhd_config /config_file.toml
claoire's picture
feat: upload elsayuhd lora model
587f908
[model_arguments]
v2 = false
v_parameterization = false
pretrained_model_name_or_path = "/content/pretrained_model/AinoSekai-v0.43-Ayu.safetensors"
[additional_network_arguments]
no_metadata = false
unet_lr = 0.0001
text_encoder_lr = 5e-5
network_module = "networks.lora"
network_dim = 32
network_alpha = 16
network_train_unet_only = false
network_train_text_encoder_only = false
[optimizer_arguments]
optimizer_type = "AdamW8bit"
learning_rate = 0.0001
max_grad_norm = 1.0
lr_scheduler = "constant"
lr_warmup_steps = 0
[dataset_arguments]
cache_latents = true
debug_dataset = false
vae_batch_size = 4
[training_arguments]
output_dir = "/content/LoRA/output"
output_name = "elsayuhd"
save_precision = "fp16"
save_every_n_epochs = 1
train_batch_size = 6
max_token_length = 225
mem_eff_attn = false
xformers = true
max_train_epochs = 10
max_data_loader_n_workers = 8
persistent_data_loader_workers = true
gradient_checkpointing = false
gradient_accumulation_steps = 1
mixed_precision = "fp16"
clip_skip = 2
logging_dir = "/content/LoRA/logs"
log_prefix = "elsayuhd"
lowram = true
[sample_prompt_arguments]
sample_every_n_epochs = 1
sample_sampler = "ddim"
[dreambooth_arguments]
prior_loss_weight = 1.0
[saving_arguments]
save_model_as = "safetensors"