ckadirt commited on
Commit
19c938f
·
verified ·
1 Parent(s): 7c21308

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +3 -0
  2. 541270.err +7 -0
  3. 541270.out +5 -0
  4. 541272.err +7 -0
  5. 541272.out +8 -0
  6. 541275.err +7 -0
  7. 541275.out +8 -0
  8. 541276.err +0 -0
  9. 541276.out +194 -0
  10. 541280.err +7 -0
  11. 541280.out +4 -0
  12. 541281.err +20 -0
  13. 541281.out +4 -0
  14. 541282.err +54 -0
  15. 541282.out +70 -0
  16. 541283.err +54 -0
  17. 541283.out +70 -0
  18. 541284.err +16 -0
  19. 541284.out +68 -0
  20. 541285.err +3 -0
  21. 541285.out +0 -0
  22. 541286.err +14 -0
  23. 541286.out +5 -0
  24. 541287.err +21 -0
  25. 541287.out +21 -0
  26. 541290.err +18 -0
  27. 541290.out +20 -0
  28. 541293.err +0 -0
  29. 541293.out +194 -0
  30. 541294.err +0 -0
  31. 541294.out +208 -0
  32. 541338.err +5 -0
  33. 541338.out +4 -0
  34. 541339.err +0 -0
  35. 541339.out +46 -0
  36. 541342.err +18 -0
  37. 541342.out +68 -0
  38. 541345.err +28 -0
  39. 541345.out +15 -0
  40. 541349.err +18 -0
  41. 541349.out +23 -0
  42. 541350.err +0 -0
  43. 541350.out +264 -0
  44. 541355.err +0 -0
  45. 541355.out +265 -0
  46. 541357.err +15 -0
  47. 541357.out +68 -0
  48. 541358.err +3 -0
  49. 541358.out +1470 -0
  50. 541360.err +3 -0
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ 541358.err filter=lfs diff=lfs merge=lfs -text
37
+ 541360.err filter=lfs diff=lfs merge=lfs -text
38
+ 541285.err filter=lfs diff=lfs merge=lfs -text
541270.err ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ [NbConvertApp] Converting notebook HCP_downstream_raw_flatmaps.ipynb to python
2
+ [NbConvertApp] Writing 36448 bytes to HCP_downstream_raw_flatmaps.py
3
+ Traceback (most recent call last):
4
+ File "/weka/proj-fmri/ckadirt/fMRI-foundation-model/src/HCP_downstream_raw_flatmaps.py", line 87, in <module>
5
+ utils.seed_everything(seed)
6
+ ^^^^
7
+ NameError: name 'seed' is not defined
541270.out ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-133-32
3
+ MASTER_PORT=11200
4
+ WORLD_SIZE=1
5
+ PID of this process = 1825497
541272.err ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ [NbConvertApp] Converting notebook HCP_downstream_raw_flatmaps.ipynb to python
2
+ [NbConvertApp] Writing 36446 bytes to HCP_downstream_raw_flatmaps.py
3
+ Traceback (most recent call last):
4
+ File "/weka/proj-fmri/ckadirt/fMRI-foundation-model/src/HCP_downstream_raw_flatmaps.py", line 737, in <module>
5
+ optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
6
+ ^^^^^^^^^^^^^
7
+ NameError: name 'learning_rate' is not defined
541272.out ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-133-32
3
+ MASTER_PORT=12606
4
+ WORLD_SIZE=1
5
+ PID of this process = 1826825
6
+ ------ ARGS -------
7
+ Namespace(model_suffix='beta', hcp_flat_path='/weka/proj-medarc/shared/HCP-Flat', batch_size=128, wandb_log=True, num_epochs=20, lr_scheduler_type='cycle', save_ckpt=False, seed=42, max_lr=0.1, target='sex', num_workers=15, weight_decay=1e-05)
8
+ Input dimension: 737280
541275.err ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ [NbConvertApp] Converting notebook HCP_downstream_raw_flatmaps.ipynb to python
2
+ [NbConvertApp] Writing 36336 bytes to HCP_downstream_raw_flatmaps.py
3
+ Traceback (most recent call last):
4
+ File "/weka/proj-fmri/ckadirt/fMRI-foundation-model/src/HCP_downstream_raw_flatmaps.py", line 727, in <module>
5
+ num_iterations_per_epoch = math.ceil(flatmaps_train/batch_size)
6
+ ~~~~~~~~~~~~~~^~~~~~~~~~~
7
+ TypeError: unsupported operand type(s) for /: 'Dataset' and 'int'
541275.out ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-136-246
3
+ MASTER_PORT=17060
4
+ WORLD_SIZE=1
5
+ PID of this process = 564369
6
+ ------ ARGS -------
7
+ Namespace(model_suffix='beta', hcp_flat_path='/weka/proj-medarc/shared/HCP-Flat', batch_size=128, wandb_log=True, num_epochs=20, lr_scheduler_type='cycle', save_ckpt=False, seed=42, max_lr=0.1, target='sex', num_workers=15, weight_decay=1e-05)
8
+ Input dimension: 737280
541276.err ADDED
The diff for this file is too large to render. See raw diff
 
541276.out ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-136-246
3
+ MASTER_PORT=16668
4
+ WORLD_SIZE=1
5
+ PID of this process = 565724
6
+ ------ ARGS -------
7
+ Namespace(model_suffix='beta', hcp_flat_path='/weka/proj-medarc/shared/HCP-Flat', batch_size=128, wandb_log=True, num_epochs=20, lr_scheduler_type='cycle', save_ckpt=False, seed=42, max_lr=0.1, target='sex', num_workers=15, weight_decay=1e-05)
8
+ Input dimension: 737280
9
+ total_steps 17400
10
+ wandb_config:
11
+ {'model_name': 'HCPflat_raw_sex', 'batch_size': 128, 'weight_decay': 1e-05, 'num_epochs': 20, 'seed': 42, 'lr_scheduler_type': 'cycle', 'save_ckpt': False, 'max_lr': 0.1, 'target': 'sex', 'num_workers': 15}
12
+ wandb_id: HCPflat_raw_beta_sex_83810
13
+ Step [100/870] - Training Loss: 24.6087 - Training Accuracy: 52.39%
14
+ Step [200/870] - Training Loss: 28.9030 - Training Accuracy: 52.85%
15
+ Step [300/870] - Training Loss: 50.2400 - Training Accuracy: 53.05%
16
+ Step [400/870] - Training Loss: 74.8264 - Training Accuracy: 53.27%
17
+ Step [500/870] - Training Loss: 91.1850 - Training Accuracy: 53.40%
18
+ Step [600/870] - Training Loss: 165.0463 - Training Accuracy: 53.63%
19
+ Step [700/870] - Training Loss: 201.5126 - Training Accuracy: 53.66%
20
+ Step [800/870] - Training Loss: 209.5273 - Training Accuracy: 53.74%
21
+ Epoch [1/20] - Training Loss: 110.8142, Training Accuracy: 53.88% - Validation Loss: 296.1424, Validation Accuracy: 53.70%
22
+ Step [100/870] - Training Loss: 298.0217 - Training Accuracy: 66.52%
23
+ Step [200/870] - Training Loss: 265.3320 - Training Accuracy: 65.68%
24
+ Step [300/870] - Training Loss: 293.1298 - Training Accuracy: 64.77%
25
+ Step [400/870] - Training Loss: 553.0426 - Training Accuracy: 64.16%
26
+ Step [500/870] - Training Loss: 594.5250 - Training Accuracy: 63.51%
27
+ Step [600/870] - Training Loss: 708.0252 - Training Accuracy: 62.87%
28
+ Step [700/870] - Training Loss: 722.7825 - Training Accuracy: 62.39%
29
+ Step [800/870] - Training Loss: 798.4144 - Training Accuracy: 61.97%
30
+ Epoch [2/20] - Training Loss: 449.1676, Training Accuracy: 61.70% - Validation Loss: 808.8942, Validation Accuracy: 54.41%
31
+ Step [100/870] - Training Loss: 396.8062 - Training Accuracy: 75.48%
32
+ Step [200/870] - Training Loss: 465.8516 - Training Accuracy: 75.21%
33
+ Step [300/870] - Training Loss: 334.3605 - Training Accuracy: 75.27%
34
+ Step [400/870] - Training Loss: 362.5482 - Training Accuracy: 74.79%
35
+ Step [500/870] - Training Loss: 458.4806 - Training Accuracy: 74.32%
36
+ Step [600/870] - Training Loss: 336.7921 - Training Accuracy: 73.79%
37
+ Step [700/870] - Training Loss: 595.4280 - Training Accuracy: 73.40%
38
+ Step [800/870] - Training Loss: 591.4528 - Training Accuracy: 73.04%
39
+ Epoch [3/20] - Training Loss: 434.5445, Training Accuracy: 72.76% - Validation Loss: 1042.0977, Validation Accuracy: 54.73%
40
+ Step [100/870] - Training Loss: 270.8356 - Training Accuracy: 83.11%
41
+ Step [200/870] - Training Loss: 361.4072 - Training Accuracy: 83.15%
42
+ Step [300/870] - Training Loss: 275.5848 - Training Accuracy: 82.82%
43
+ Step [400/870] - Training Loss: 307.0319 - Training Accuracy: 82.44%
44
+ Step [500/870] - Training Loss: 326.9714 - Training Accuracy: 82.14%
45
+ Step [600/870] - Training Loss: 271.0794 - Training Accuracy: 81.70%
46
+ Step [700/870] - Training Loss: 260.8827 - Training Accuracy: 81.37%
47
+ Step [800/870] - Training Loss: 419.5749 - Training Accuracy: 81.08%
48
+ Epoch [4/20] - Training Loss: 296.3454, Training Accuracy: 80.79% - Validation Loss: 1187.6379, Validation Accuracy: 55.25%
49
+ Step [100/870] - Training Loss: 214.9724 - Training Accuracy: 87.92%
50
+ Step [200/870] - Training Loss: 77.4744 - Training Accuracy: 87.77%
51
+ Step [300/870] - Training Loss: 149.2222 - Training Accuracy: 87.47%
52
+ Step [400/870] - Training Loss: 141.0663 - Training Accuracy: 87.16%
53
+ Step [500/870] - Training Loss: 231.0289 - Training Accuracy: 86.83%
54
+ Step [600/870] - Training Loss: 186.0840 - Training Accuracy: 86.38%
55
+ Step [700/870] - Training Loss: 163.8004 - Training Accuracy: 85.99%
56
+ Step [800/870] - Training Loss: 304.4012 - Training Accuracy: 85.70%
57
+ Epoch [5/20] - Training Loss: 211.2076, Training Accuracy: 85.50% - Validation Loss: 1311.0324, Validation Accuracy: 55.02%
58
+ Step [100/870] - Training Loss: 112.8653 - Training Accuracy: 90.42%
59
+ Step [200/870] - Training Loss: 182.0056 - Training Accuracy: 90.31%
60
+ Step [300/870] - Training Loss: 151.2417 - Training Accuracy: 90.17%
61
+ Step [400/870] - Training Loss: 174.8410 - Training Accuracy: 89.76%
62
+ Step [500/870] - Training Loss: 164.9281 - Training Accuracy: 89.42%
63
+ Step [600/870] - Training Loss: 176.1206 - Training Accuracy: 89.19%
64
+ Step [700/870] - Training Loss: 189.1104 - Training Accuracy: 88.92%
65
+ Step [800/870] - Training Loss: 164.0583 - Training Accuracy: 88.64%
66
+ Epoch [6/20] - Training Loss: 161.3509, Training Accuracy: 88.49% - Validation Loss: 1458.8603, Validation Accuracy: 54.97%
67
+ Step [100/870] - Training Loss: 96.9147 - Training Accuracy: 91.70%
68
+ Step [200/870] - Training Loss: 89.6436 - Training Accuracy: 91.68%
69
+ Step [300/870] - Training Loss: 88.9899 - Training Accuracy: 91.55%
70
+ Step [400/870] - Training Loss: 90.7214 - Training Accuracy: 91.36%
71
+ Step [500/870] - Training Loss: 246.9420 - Training Accuracy: 91.10%
72
+ Step [600/870] - Training Loss: 143.6372 - Training Accuracy: 90.95%
73
+ Step [700/870] - Training Loss: 132.4662 - Training Accuracy: 90.78%
74
+ Step [800/870] - Training Loss: 199.1868 - Training Accuracy: 90.55%
75
+ Epoch [7/20] - Training Loss: 130.6820, Training Accuracy: 90.41% - Validation Loss: 1515.6320, Validation Accuracy: 55.45%
76
+ Step [100/870] - Training Loss: 40.2281 - Training Accuracy: 93.41%
77
+ Step [200/870] - Training Loss: 31.9451 - Training Accuracy: 93.21%
78
+ Step [300/870] - Training Loss: 51.2280 - Training Accuracy: 93.23%
79
+ Step [400/870] - Training Loss: 100.9511 - Training Accuracy: 93.02%
80
+ Step [500/870] - Training Loss: 103.3127 - Training Accuracy: 92.90%
81
+ Step [600/870] - Training Loss: 152.1203 - Training Accuracy: 92.78%
82
+ Step [700/870] - Training Loss: 108.2650 - Training Accuracy: 92.67%
83
+ Step [800/870] - Training Loss: 93.6054 - Training Accuracy: 92.52%
84
+ Epoch [8/20] - Training Loss: 96.2420, Training Accuracy: 92.41% - Validation Loss: 1629.8896, Validation Accuracy: 55.26%
85
+ Step [100/870] - Training Loss: 48.9615 - Training Accuracy: 95.19%
86
+ Step [200/870] - Training Loss: 37.2198 - Training Accuracy: 95.09%
87
+ Step [300/870] - Training Loss: 57.5891 - Training Accuracy: 94.78%
88
+ Step [400/870] - Training Loss: 116.6951 - Training Accuracy: 94.65%
89
+ Step [500/870] - Training Loss: 106.4395 - Training Accuracy: 94.49%
90
+ Step [600/870] - Training Loss: 67.2050 - Training Accuracy: 94.33%
91
+ Step [700/870] - Training Loss: 29.4207 - Training Accuracy: 94.26%
92
+ Step [800/870] - Training Loss: 19.4606 - Training Accuracy: 94.18%
93
+ Epoch [9/20] - Training Loss: 70.5700, Training Accuracy: 94.06% - Validation Loss: 1667.6055, Validation Accuracy: 54.94%
94
+ Step [100/870] - Training Loss: 133.2186 - Training Accuracy: 95.77%
95
+ Step [200/870] - Training Loss: 39.1579 - Training Accuracy: 96.05%
96
+ Step [300/870] - Training Loss: 19.6516 - Training Accuracy: 95.85%
97
+ Step [400/870] - Training Loss: 14.1961 - Training Accuracy: 95.73%
98
+ Step [500/870] - Training Loss: 69.0657 - Training Accuracy: 95.66%
99
+ Step [600/870] - Training Loss: 86.5776 - Training Accuracy: 95.54%
100
+ Step [700/870] - Training Loss: 40.0283 - Training Accuracy: 95.48%
101
+ Step [800/870] - Training Loss: 74.8730 - Training Accuracy: 95.35%
102
+ Epoch [10/20] - Training Loss: 51.8441, Training Accuracy: 95.28% - Validation Loss: 1732.3389, Validation Accuracy: 55.58%
103
+ Step [100/870] - Training Loss: 15.9613 - Training Accuracy: 97.03%
104
+ Step [200/870] - Training Loss: 17.7464 - Training Accuracy: 96.98%
105
+ Step [300/870] - Training Loss: 22.3283 - Training Accuracy: 96.74%
106
+ Step [400/870] - Training Loss: 38.1730 - Training Accuracy: 96.69%
107
+ Step [500/870] - Training Loss: 4.6681 - Training Accuracy: 96.59%
108
+ Step [600/870] - Training Loss: 28.4868 - Training Accuracy: 96.55%
109
+ Step [700/870] - Training Loss: 55.0123 - Training Accuracy: 96.50%
110
+ Step [800/870] - Training Loss: 26.6057 - Training Accuracy: 96.43%
111
+ Epoch [11/20] - Training Loss: 36.3423, Training Accuracy: 96.41% - Validation Loss: 1742.7579, Validation Accuracy: 55.19%
112
+ Step [100/870] - Training Loss: 8.1488 - Training Accuracy: 97.70%
113
+ Step [200/870] - Training Loss: 18.2396 - Training Accuracy: 97.66%
114
+ Step [300/870] - Training Loss: 0.0000 - Training Accuracy: 97.64%
115
+ Step [400/870] - Training Loss: 2.1231 - Training Accuracy: 97.49%
116
+ Step [500/870] - Training Loss: 8.7330 - Training Accuracy: 97.50%
117
+ Step [600/870] - Training Loss: 15.5849 - Training Accuracy: 97.42%
118
+ Step [700/870] - Training Loss: 5.5085 - Training Accuracy: 97.39%
119
+ Step [800/870] - Training Loss: 93.1239 - Training Accuracy: 97.39%
120
+ Epoch [12/20] - Training Loss: 23.7009, Training Accuracy: 97.35% - Validation Loss: 1784.1253, Validation Accuracy: 55.40%
121
+ Step [100/870] - Training Loss: 4.8382 - Training Accuracy: 98.20%
122
+ Step [200/870] - Training Loss: 25.5308 - Training Accuracy: 98.27%
123
+ Step [300/870] - Training Loss: 11.4365 - Training Accuracy: 98.38%
124
+ Step [400/870] - Training Loss: 0.1192 - Training Accuracy: 98.33%
125
+ Step [500/870] - Training Loss: 13.1149 - Training Accuracy: 98.35%
126
+ Step [600/870] - Training Loss: 0.7187 - Training Accuracy: 98.30%
127
+ Step [700/870] - Training Loss: 18.9833 - Training Accuracy: 98.26%
128
+ Step [800/870] - Training Loss: 10.3944 - Training Accuracy: 98.25%
129
+ Epoch [13/20] - Training Loss: 12.9698, Training Accuracy: 98.21% - Validation Loss: 1779.4520, Validation Accuracy: 55.43%
130
+ Step [100/870] - Training Loss: 0.2771 - Training Accuracy: 98.88%
131
+ Step [200/870] - Training Loss: 6.9764 - Training Accuracy: 98.95%
132
+ Step [300/870] - Training Loss: 6.0478 - Training Accuracy: 98.99%
133
+ Step [400/870] - Training Loss: 7.7897 - Training Accuracy: 98.92%
134
+ Step [500/870] - Training Loss: 0.0729 - Training Accuracy: 98.92%
135
+ Step [600/870] - Training Loss: 24.3455 - Training Accuracy: 98.91%
136
+ Step [700/870] - Training Loss: 3.5273 - Training Accuracy: 98.91%
137
+ Step [800/870] - Training Loss: 1.3470 - Training Accuracy: 98.88%
138
+ Epoch [14/20] - Training Loss: 6.8809, Training Accuracy: 98.87% - Validation Loss: 1781.8475, Validation Accuracy: 55.26%
139
+ Step [100/870] - Training Loss: 14.5071 - Training Accuracy: 99.46%
140
+ Step [200/870] - Training Loss: 15.6453 - Training Accuracy: 99.30%
141
+ Step [300/870] - Training Loss: 8.2637 - Training Accuracy: 99.29%
142
+ Step [400/870] - Training Loss: 0.0000 - Training Accuracy: 99.34%
143
+ Step [500/870] - Training Loss: 0.0000 - Training Accuracy: 99.35%
144
+ Step [600/870] - Training Loss: 5.3401 - Training Accuracy: 99.34%
145
+ Step [700/870] - Training Loss: 0.0000 - Training Accuracy: 99.30%
146
+ Step [800/870] - Training Loss: 2.4279 - Training Accuracy: 99.29%
147
+ Epoch [15/20] - Training Loss: 3.5025, Training Accuracy: 99.29% - Validation Loss: 1785.6069, Validation Accuracy: 55.18%
148
+ Step [100/870] - Training Loss: 0.0000 - Training Accuracy: 99.59%
149
+ Step [200/870] - Training Loss: 0.0000 - Training Accuracy: 99.59%
150
+ Step [300/870] - Training Loss: 0.0000 - Training Accuracy: 99.60%
151
+ Step [400/870] - Training Loss: 0.0000 - Training Accuracy: 99.59%
152
+ Step [500/870] - Training Loss: 0.6290 - Training Accuracy: 99.60%
153
+ Step [600/870] - Training Loss: 0.0002 - Training Accuracy: 99.60%
154
+ Step [700/870] - Training Loss: 4.8578 - Training Accuracy: 99.60%
155
+ Step [800/870] - Training Loss: 5.8444 - Training Accuracy: 99.59%
156
+ Epoch [16/20] - Training Loss: 1.6734, Training Accuracy: 99.58% - Validation Loss: 1784.3434, Validation Accuracy: 55.04%
157
+ Step [100/870] - Training Loss: 0.0000 - Training Accuracy: 99.81%
158
+ Step [200/870] - Training Loss: 0.0000 - Training Accuracy: 99.80%
159
+ Step [300/870] - Training Loss: 3.4523 - Training Accuracy: 99.80%
160
+ Step [400/870] - Training Loss: 0.0000 - Training Accuracy: 99.79%
161
+ Step [500/870] - Training Loss: 2.6484 - Training Accuracy: 99.80%
162
+ Step [600/870] - Training Loss: 0.0000 - Training Accuracy: 99.80%
163
+ Step [700/870] - Training Loss: 0.0000 - Training Accuracy: 99.80%
164
+ Step [800/870] - Training Loss: 0.0000 - Training Accuracy: 99.80%
165
+ Epoch [17/20] - Training Loss: 0.6116, Training Accuracy: 99.80% - Validation Loss: 1777.6393, Validation Accuracy: 55.25%
166
+ Step [100/870] - Training Loss: 0.0000 - Training Accuracy: 99.90%
167
+ Step [200/870] - Training Loss: 0.0000 - Training Accuracy: 99.89%
168
+ Step [300/870] - Training Loss: 1.4993 - Training Accuracy: 99.89%
169
+ Step [400/870] - Training Loss: 1.9943 - Training Accuracy: 99.89%
170
+ Step [500/870] - Training Loss: 0.0000 - Training Accuracy: 99.90%
171
+ Step [600/870] - Training Loss: 0.0000 - Training Accuracy: 99.90%
172
+ Step [700/870] - Training Loss: 0.0000 - Training Accuracy: 99.90%
173
+ Step [800/870] - Training Loss: 0.0000 - Training Accuracy: 99.91%
174
+ Epoch [18/20] - Training Loss: 0.1591, Training Accuracy: 99.91% - Validation Loss: 1778.0985, Validation Accuracy: 55.21%
175
+ Step [100/870] - Training Loss: 0.0000 - Training Accuracy: 99.95%
176
+ Step [200/870] - Training Loss: 0.0000 - Training Accuracy: 99.97%
177
+ Step [300/870] - Training Loss: 0.0000 - Training Accuracy: 99.96%
178
+ Step [400/870] - Training Loss: 0.0000 - Training Accuracy: 99.97%
179
+ Step [500/870] - Training Loss: 0.0000 - Training Accuracy: 99.97%
180
+ Step [600/870] - Training Loss: 0.0000 - Training Accuracy: 99.97%
181
+ Step [700/870] - Training Loss: 0.0000 - Training Accuracy: 99.98%
182
+ Step [800/870] - Training Loss: 0.0000 - Training Accuracy: 99.98%
183
+ Epoch [19/20] - Training Loss: 0.0197, Training Accuracy: 99.98% - Validation Loss: 1777.6055, Validation Accuracy: 55.31%
184
+ Step [100/870] - Training Loss: 0.0000 - Training Accuracy: 100.00%
185
+ Step [200/870] - Training Loss: 0.0000 - Training Accuracy: 100.00%
186
+ Step [300/870] - Training Loss: 0.0000 - Training Accuracy: 100.00%
187
+ Step [400/870] - Training Loss: 0.0000 - Training Accuracy: 100.00%
188
+ Step [500/870] - Training Loss: 0.0000 - Training Accuracy: 100.00%
189
+ Step [600/870] - Training Loss: 0.0000 - Training Accuracy: 100.00%
190
+ Step [700/870] - Training Loss: 0.0000 - Training Accuracy: 100.00%
191
+ Step [800/870] - Training Loss: 0.0000 - Training Accuracy: 100.00%
192
+ Epoch [20/20] - Training Loss: 0.0008, Training Accuracy: 100.00% - Validation Loss: 1777.4007, Validation Accuracy: 55.26%
193
+ wandb: 🚀 View run HCPflat_raw_beta_sex at: https://stability.wandb.io/ckadirt/fMRI-foundation-model/runs/HCPflat_raw_beta_sex_83810
194
+ wandb: Find logs at: wandb/run-20241126_204427-HCPflat_raw_beta_sex_83810/logs
541280.err ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ [NbConvertApp] Converting notebook HCP_downstream_finetune.ipynb to python
2
+ [NbConvertApp] Writing 31620 bytes to HCP_downstream_finetune.py
3
+ Traceback (most recent call last):
4
+ File "/weka/proj-fmri/ckadirt/fMRI-foundation-model/src/HCP_downstream_finetune.py", line 72, in <module>
5
+ parser = argparse.ArgumentParser(description="Model Training Configuration")
6
+ ^^^^^^^^
7
+ NameError: name 'argparse' is not defined
541280.out ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-133-32
3
+ MASTER_PORT=13737
4
+ WORLD_SIZE=1
541281.err ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [NbConvertApp] Converting notebook HCP_downstream_finetune.ipynb to python
2
+ [NbConvertApp] Writing 31636 bytes to HCP_downstream_finetune.py
3
+ Traceback (most recent call last):
4
+ File "/weka/proj-fmri/ckadirt/fMRI-foundation-model/src/HCP_downstream_finetune.py", line 123, in <module>
5
+ parser.add_argument(
6
+ File "/usr/lib/python3.11/argparse.py", line 1485, in add_argument
7
+ return self._add_action(action)
8
+ ^^^^^^^^^^^^^^^^^^^^^^^^
9
+ File "/usr/lib/python3.11/argparse.py", line 1867, in _add_action
10
+ self._optionals._add_action(action)
11
+ File "/usr/lib/python3.11/argparse.py", line 1687, in _add_action
12
+ action = super(_ArgumentGroup, self)._add_action(action)
13
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14
+ File "/usr/lib/python3.11/argparse.py", line 1499, in _add_action
15
+ self._check_conflict(action)
16
+ File "/usr/lib/python3.11/argparse.py", line 1636, in _check_conflict
17
+ conflict_handler(action, confl_optionals)
18
+ File "/usr/lib/python3.11/argparse.py", line 1645, in _handle_conflict_error
19
+ raise ArgumentError(action, message % conflict_string)
20
+ argparse.ArgumentError: argument --wandb_log/--no-wandb_log: conflicting option strings: --wandb_log, --no-wandb_log
541281.out ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-133-32
3
+ MASTER_PORT=13853
4
+ WORLD_SIZE=1
541282.err ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [NbConvertApp] Converting notebook HCP_downstream_finetune.ipynb to python
2
+ [NbConvertApp] Writing 31825 bytes to HCP_downstream_finetune.py
3
+ /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/HCP_downstream_finetune.py:658: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
4
+ state = torch.load(checkpoint_path)
5
+ wandb: Using wandb-core as the SDK backend. Please refer to https://wandb.me/wandb-core for more information.
6
+ wandb: Currently logged in as: ckadirt. Use `wandb login --relogin` to force relogin
7
+ wandb: Tracking run with wandb version 0.18.3
8
+ wandb: Run data is saved locally in /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/wandb/run-20241126_213704-HCPflat_large_gsrFalse__beta_sex_HCPFT_83810
9
+ wandb: Run `wandb offline` to turn off syncing.
10
+ wandb: Syncing run HCPflat_large_gsrFalse__beta_sex_HCPFT
11
+ wandb: ⭐️ View project at https://stability.wandb.io/ckadirt/fMRI-foundation-model
12
+ wandb: 🚀 View run at https://stability.wandb.io/ckadirt/fMRI-foundation-model/runs/HCPflat_large_gsrFalse__beta_sex_HCPFT_83810
13
+
14
+ Traceback (most recent call last):
15
+ File "/weka/proj-fmri/ckadirt/fMRI-foundation-model/src/HCP_downstream_finetune.py", line 843, in <module>
16
+ outputs = model(images, gsr=gsr) # Shape: [num_train_samples, num_classes]
17
+ ^^^^^^^^^^^^^^^^^^^^^^
18
+ File "/admin/home-ckadirt/foundation_env/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
19
+ return self._call_impl(*args, **kwargs)
20
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21
+ File "/admin/home-ckadirt/foundation_env/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
22
+ return forward_call(*args, **kwargs)
23
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24
+ File "/weka/proj-fmri/ckadirt/fMRI-foundation-model/src/HCP_downstream_finetune.py", line 696, in forward
25
+ x = self.mae_model(x, global_pool=global_pool, forward_features = True)
26
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
27
+ File "/admin/home-ckadirt/foundation_env/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
28
+ return self._call_impl(*args, **kwargs)
29
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
30
+ File "/admin/home-ckadirt/foundation_env/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
31
+ return forward_call(*args, **kwargs)
32
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
33
+ File "/weka/proj-fmri/ckadirt/fMRI-foundation-model/src/mae_utils/flat_models.py", line 753, in forward
34
+ x = blk(x)
35
+ ^^^^^^
36
+ File "/admin/home-ckadirt/foundation_env/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
37
+ return self._call_impl(*args, **kwargs)
38
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
39
+ File "/admin/home-ckadirt/foundation_env/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
40
+ return forward_call(*args, **kwargs)
41
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
42
+ File "/weka/proj-fmri/ckadirt/fMRI-foundation-model/src/mae_utils/video_vit.py", line 166, in forward
43
+ x = x + self.drop_path(self.attn(self.norm1(x)))
44
+ ^^^^^^^^^^^^^^^^^^^^^^^^
45
+ File "/admin/home-ckadirt/foundation_env/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
46
+ return self._call_impl(*args, **kwargs)
47
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
48
+ File "/admin/home-ckadirt/foundation_env/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
49
+ return forward_call(*args, **kwargs)
50
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
51
+ File "/weka/proj-fmri/ckadirt/fMRI-foundation-model/src/mae_utils/video_vit.py", line 114, in forward
52
+ attn = (q @ k.transpose(-2, -1)) * self.scale
53
+ ~~^~~~~~~~~~~~~~~~~~~~~
54
+ torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.71 GiB. GPU 0 has a total capacity of 79.11 GiB of which 770.94 MiB is free. Including non-PyTorch memory, this process has 78.35 GiB memory in use. Of the allocated memory 74.92 GiB is allocated by PyTorch, and 2.77 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
541282.out ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-133-32
3
+ MASTER_PORT=14835
4
+ WORLD_SIZE=1
5
+ ------ ARGS -------
6
+ Namespace(found_model_name='HCPflat_large_gsrFalse_', epoch_checkpoint='epoch99.pth', model_suffix='beta', hcp_flat_path='/weka/proj-medarc/shared/HCP-Flat', batch_size=32, wandb_log=True, num_epochs=20, lr_scheduler_type='cycle', save_ckpt=False, seed=42, max_lr=0.0003, target='sex', num_workers=15, weight_decay=0.001, global_pool=True)
7
+ outdir /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/checkpoints/HCPflat_large_gsrFalse_
8
+ Loaded config.yaml from ckpt folder /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/checkpoints/HCPflat_large_gsrFalse_
9
+
10
+ __CONFIG__
11
+ base_lr = 0.001
12
+ batch_size = 32
13
+ ckpt_interval = 5
14
+ ckpt_saving = True
15
+ cls_embed = True
16
+ contrastive_loss_weight = 1.0
17
+ datasets_to_include = HCP
18
+ decoder_embed_dim = 512
19
+ grad_accumulation_steps = 1
20
+ grad_clip = 1.0
21
+ gsr = False
22
+ hcp_flat_path = /weka/proj-medarc/shared/HCP-Flat
23
+ mask_ratio = 0.75
24
+ model_name = HCPflat_large_gsrFalse_
25
+ no_qkv_bias = False
26
+ norm_pix_loss = False
27
+ nsd_flat_path = /weka/proj-medarc/shared/NSD-Flat
28
+ num_epochs = 100
29
+ num_frames = 16
30
+ num_samples_per_epoch = 200000
31
+ num_workers = 10
32
+ patch_size = 16
33
+ pct_masks_to_decode = 1
34
+ plotting = True
35
+ pred_t_dim = 8
36
+ print_interval = 20
37
+ probe_base_lr = 0.0003
38
+ probe_batch_size = 8
39
+ probe_num_epochs = 30
40
+ probe_num_samples_per_epoch = 100000
41
+ resume_from_ckpt = True
42
+ seed = 42
43
+ sep_pos_embed = True
44
+ t_patch_size = 2
45
+ test_num_samples_per_epoch = 50000
46
+ test_set = False
47
+ trunc_init = False
48
+ use_contrastive_loss = False
49
+ wandb_log = True
50
+
51
+
52
+ WORLD_SIZE=1
53
+ PID of this process = 1885623
54
+ global_pool = True
55
+ gsr = False
56
+ Creating datasets
57
+ Datasets ready
58
+ img_size (144, 320) patch_size (16, 16) frames 16 t_patch_size 2
59
+ model initialized
60
+ latest_checkpoint: epoch99.pth
61
+
62
+ Loaded checkpoint epoch99.pth from /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/checkpoints/HCPflat_large_gsrFalse_
63
+
64
+ Input dimension: 1024
65
+ total_steps 69580
66
+ wandb_config:
67
+ {'model_name': 'HCPflat_large_gsrFalse__HCP_FT_sex', 'batch_size': 32, 'weight_decay': 0.001, 'num_epochs': 20, 'seed': 42, 'lr_scheduler_type': 'cycle', 'save_ckpt': False, 'max_lr': 0.0003, 'target': 'sex', 'num_workers': 15}
68
+ wandb_id: HCPflat_large_gsrFalse__beta_sex_HCPFT_83810
69
+ wandb: 🚀 View run HCPflat_large_gsrFalse__beta_sex_HCPFT at: https://stability.wandb.io/ckadirt/fMRI-foundation-model/runs/HCPflat_large_gsrFalse__beta_sex_HCPFT_83810
70
+ wandb: Find logs at: wandb/run-20241126_213704-HCPflat_large_gsrFalse__beta_sex_HCPFT_83810/logs
541283.err ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [NbConvertApp] Converting notebook HCP_downstream_finetune.ipynb to python
2
+ [NbConvertApp] Writing 31825 bytes to HCP_downstream_finetune.py
3
+ /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/HCP_downstream_finetune.py:658: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
4
+ state = torch.load(checkpoint_path)
5
+ wandb: Using wandb-core as the SDK backend. Please refer to https://wandb.me/wandb-core for more information.
6
+ wandb: Currently logged in as: ckadirt. Use `wandb login --relogin` to force relogin
7
+ wandb: Tracking run with wandb version 0.18.3
8
+ wandb: Run data is saved locally in /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/wandb/run-20241126_213826-HCPflat_large_gsrFalse__beta_sex_HCPFT_83810
9
+ wandb: Run `wandb offline` to turn off syncing.
10
+ wandb: Resuming run HCPflat_large_gsrFalse__beta_sex_HCPFT
11
+ wandb: ⭐️ View project at https://stability.wandb.io/ckadirt/fMRI-foundation-model
12
+ wandb: 🚀 View run at https://stability.wandb.io/ckadirt/fMRI-foundation-model/runs/HCPflat_large_gsrFalse__beta_sex_HCPFT_83810
13
+
14
+ Traceback (most recent call last):
15
+ File "/weka/proj-fmri/ckadirt/fMRI-foundation-model/src/HCP_downstream_finetune.py", line 843, in <module>
16
+ outputs = model(images, gsr=gsr) # Shape: [num_train_samples, num_classes]
17
+ ^^^^^^^^^^^^^^^^^^^^^^
18
+ File "/admin/home-ckadirt/foundation_env/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
19
+ return self._call_impl(*args, **kwargs)
20
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21
+ File "/admin/home-ckadirt/foundation_env/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
22
+ return forward_call(*args, **kwargs)
23
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
24
+ File "/weka/proj-fmri/ckadirt/fMRI-foundation-model/src/HCP_downstream_finetune.py", line 696, in forward
25
+ x = self.mae_model(x, global_pool=global_pool, forward_features = True)
26
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
27
+ File "/admin/home-ckadirt/foundation_env/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
28
+ return self._call_impl(*args, **kwargs)
29
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
30
+ File "/admin/home-ckadirt/foundation_env/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
31
+ return forward_call(*args, **kwargs)
32
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
33
+ File "/weka/proj-fmri/ckadirt/fMRI-foundation-model/src/mae_utils/flat_models.py", line 753, in forward
34
+ x = blk(x)
35
+ ^^^^^^
36
+ File "/admin/home-ckadirt/foundation_env/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
37
+ return self._call_impl(*args, **kwargs)
38
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
39
+ File "/admin/home-ckadirt/foundation_env/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
40
+ return forward_call(*args, **kwargs)
41
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
42
+ File "/weka/proj-fmri/ckadirt/fMRI-foundation-model/src/mae_utils/video_vit.py", line 166, in forward
43
+ x = x + self.drop_path(self.attn(self.norm1(x)))
44
+ ^^^^^^^^^^^^^^^^^^^^^^^^
45
+ File "/admin/home-ckadirt/foundation_env/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
46
+ return self._call_impl(*args, **kwargs)
47
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
48
+ File "/admin/home-ckadirt/foundation_env/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
49
+ return forward_call(*args, **kwargs)
50
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
51
+ File "/weka/proj-fmri/ckadirt/fMRI-foundation-model/src/mae_utils/video_vit.py", line 114, in forward
52
+ attn = (q @ k.transpose(-2, -1)) * self.scale
53
+ ~~^~~~~~~~~~~~~~~~~~~~~
54
+ torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.04 GiB. GPU 0 has a total capacity of 79.11 GiB of which 1.06 GiB is free. Including non-PyTorch memory, this process has 78.04 GiB memory in use. Of the allocated memory 75.85 GiB is allocated by PyTorch, and 1.52 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
541283.out ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-133-32
3
+ MASTER_PORT=17673
4
+ WORLD_SIZE=1
5
+ ------ ARGS -------
6
+ Namespace(found_model_name='HCPflat_large_gsrFalse_', epoch_checkpoint='epoch99.pth', model_suffix='beta', hcp_flat_path='/weka/proj-medarc/shared/HCP-Flat', batch_size=24, wandb_log=True, num_epochs=20, lr_scheduler_type='cycle', save_ckpt=False, seed=42, max_lr=0.0003, target='sex', num_workers=15, weight_decay=0.001, global_pool=True)
7
+ outdir /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/checkpoints/HCPflat_large_gsrFalse_
8
+ Loaded config.yaml from ckpt folder /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/checkpoints/HCPflat_large_gsrFalse_
9
+
10
+ __CONFIG__
11
+ base_lr = 0.001
12
+ batch_size = 32
13
+ ckpt_interval = 5
14
+ ckpt_saving = True
15
+ cls_embed = True
16
+ contrastive_loss_weight = 1.0
17
+ datasets_to_include = HCP
18
+ decoder_embed_dim = 512
19
+ grad_accumulation_steps = 1
20
+ grad_clip = 1.0
21
+ gsr = False
22
+ hcp_flat_path = /weka/proj-medarc/shared/HCP-Flat
23
+ mask_ratio = 0.75
24
+ model_name = HCPflat_large_gsrFalse_
25
+ no_qkv_bias = False
26
+ norm_pix_loss = False
27
+ nsd_flat_path = /weka/proj-medarc/shared/NSD-Flat
28
+ num_epochs = 100
29
+ num_frames = 16
30
+ num_samples_per_epoch = 200000
31
+ num_workers = 10
32
+ patch_size = 16
33
+ pct_masks_to_decode = 1
34
+ plotting = True
35
+ pred_t_dim = 8
36
+ print_interval = 20
37
+ probe_base_lr = 0.0003
38
+ probe_batch_size = 8
39
+ probe_num_epochs = 30
40
+ probe_num_samples_per_epoch = 100000
41
+ resume_from_ckpt = True
42
+ seed = 42
43
+ sep_pos_embed = True
44
+ t_patch_size = 2
45
+ test_num_samples_per_epoch = 50000
46
+ test_set = False
47
+ trunc_init = False
48
+ use_contrastive_loss = False
49
+ wandb_log = True
50
+
51
+
52
+ WORLD_SIZE=1
53
+ PID of this process = 1888215
54
+ global_pool = True
55
+ gsr = False
56
+ Creating datasets
57
+ Datasets ready
58
+ img_size (144, 320) patch_size (16, 16) frames 16 t_patch_size 2
59
+ model initialized
60
+ latest_checkpoint: epoch99.pth
61
+
62
+ Loaded checkpoint epoch99.pth from /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/checkpoints/HCPflat_large_gsrFalse_
63
+
64
+ Input dimension: 1024
65
+ total_steps 92760
66
+ wandb_config:
67
+ {'model_name': 'HCPflat_large_gsrFalse__HCP_FT_sex', 'batch_size': 24, 'weight_decay': 0.001, 'num_epochs': 20, 'seed': 42, 'lr_scheduler_type': 'cycle', 'save_ckpt': False, 'max_lr': 0.0003, 'target': 'sex', 'num_workers': 15}
68
+ wandb_id: HCPflat_large_gsrFalse__beta_sex_HCPFT_83810
69
+ wandb: 🚀 View run HCPflat_large_gsrFalse__beta_sex_HCPFT at: https://stability.wandb.io/ckadirt/fMRI-foundation-model/runs/HCPflat_large_gsrFalse__beta_sex_HCPFT_83810
70
+ wandb: Find logs at: wandb/run-20241126_213826-HCPflat_large_gsrFalse__beta_sex_HCPFT_83810/logs
541284.err ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [NbConvertApp] Converting notebook HCP_downstream_finetune.ipynb to python
2
+ [NbConvertApp] Writing 31825 bytes to HCP_downstream_finetune.py
3
+ /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/HCP_downstream_finetune.py:658: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
4
+ state = torch.load(checkpoint_path)
5
+ wandb: Using wandb-core as the SDK backend. Please refer to https://wandb.me/wandb-core for more information.
6
+ wandb: Currently logged in as: ckadirt. Use `wandb login --relogin` to force relogin
7
+ wandb: Tracking run with wandb version 0.18.3
8
+ wandb: Run data is saved locally in /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/wandb/run-20241126_214117-HCPflat_large_gsrFalse__beta_sex_HCPFT_83810
9
+ wandb: Run `wandb offline` to turn off syncing.
10
+ wandb: Resuming run HCPflat_large_gsrFalse__beta_sex_HCPFT
11
+ wandb: ⭐️ View project at https://stability.wandb.io/ckadirt/fMRI-foundation-model
12
+ wandb: 🚀 View run at https://stability.wandb.io/ckadirt/fMRI-foundation-model/runs/HCPflat_large_gsrFalse__beta_sex_HCPFT_83810
13
+
14
+ slurmstepd: error: *** JOB 541284 ON ip-10-0-133-32 CANCELLED AT 2024-11-26T21:43:06 ***
15
+ slurmstepd: error: *** REASON: burst_buffer/lua: Stage-out in progress ***
16
+
541284.out ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-133-32
3
+ MASTER_PORT=16266
4
+ WORLD_SIZE=1
5
+ ------ ARGS -------
6
+ Namespace(found_model_name='HCPflat_large_gsrFalse_', epoch_checkpoint='epoch99.pth', model_suffix='beta', hcp_flat_path='/weka/proj-medarc/shared/HCP-Flat', batch_size=16, wandb_log=True, num_epochs=20, lr_scheduler_type='cycle', save_ckpt=False, seed=42, max_lr=0.0003, target='sex', num_workers=15, weight_decay=0.001, global_pool=True)
7
+ outdir /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/checkpoints/HCPflat_large_gsrFalse_
8
+ Loaded config.yaml from ckpt folder /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/checkpoints/HCPflat_large_gsrFalse_
9
+
10
+ __CONFIG__
11
+ base_lr = 0.001
12
+ batch_size = 32
13
+ ckpt_interval = 5
14
+ ckpt_saving = True
15
+ cls_embed = True
16
+ contrastive_loss_weight = 1.0
17
+ datasets_to_include = HCP
18
+ decoder_embed_dim = 512
19
+ grad_accumulation_steps = 1
20
+ grad_clip = 1.0
21
+ gsr = False
22
+ hcp_flat_path = /weka/proj-medarc/shared/HCP-Flat
23
+ mask_ratio = 0.75
24
+ model_name = HCPflat_large_gsrFalse_
25
+ no_qkv_bias = False
26
+ norm_pix_loss = False
27
+ nsd_flat_path = /weka/proj-medarc/shared/NSD-Flat
28
+ num_epochs = 100
29
+ num_frames = 16
30
+ num_samples_per_epoch = 200000
31
+ num_workers = 10
32
+ patch_size = 16
33
+ pct_masks_to_decode = 1
34
+ plotting = True
35
+ pred_t_dim = 8
36
+ print_interval = 20
37
+ probe_base_lr = 0.0003
38
+ probe_batch_size = 8
39
+ probe_num_epochs = 30
40
+ probe_num_samples_per_epoch = 100000
41
+ resume_from_ckpt = True
42
+ seed = 42
43
+ sep_pos_embed = True
44
+ t_patch_size = 2
45
+ test_num_samples_per_epoch = 50000
46
+ test_set = False
47
+ trunc_init = False
48
+ use_contrastive_loss = False
49
+ wandb_log = True
50
+
51
+
52
+ WORLD_SIZE=1
53
+ PID of this process = 1891122
54
+ global_pool = True
55
+ gsr = False
56
+ Creating datasets
57
+ Datasets ready
58
+ img_size (144, 320) patch_size (16, 16) frames 16 t_patch_size 2
59
+ model initialized
60
+ latest_checkpoint: epoch99.pth
61
+
62
+ Loaded checkpoint epoch99.pth from /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/checkpoints/HCPflat_large_gsrFalse_
63
+
64
+ Input dimension: 1024
65
+ total_steps 139140
66
+ wandb_config:
67
+ {'model_name': 'HCPflat_large_gsrFalse__HCP_FT_sex', 'batch_size': 16, 'weight_decay': 0.001, 'num_epochs': 20, 'seed': 42, 'lr_scheduler_type': 'cycle', 'save_ckpt': False, 'max_lr': 0.0003, 'target': 'sex', 'num_workers': 15}
68
+ wandb_id: HCPflat_large_gsrFalse__beta_sex_HCPFT_83810
541285.err ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99eca64affe9760335ce81df790b48e00296ec7821b880d9cb1e9aa3d49931f5
3
+ size 13422040
541285.out ADDED
The diff for this file is too large to render. See raw diff
 
541286.err ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [NbConvertApp] Converting notebook HCP_downstream_raw_flatmaps.ipynb to python
2
+ [NbConvertApp] Writing 36405 bytes to HCP_downstream_raw_flatmaps.py
3
+ usage: HCP_downstream_raw_flatmaps.py [-h] [--model_suffix MODEL_SUFFIX]
4
+ [--hcp_flat_path HCP_FLAT_PATH]
5
+ [--batch_size BATCH_SIZE]
6
+ [--wandb_log | --no-wandb_log]
7
+ [--num_epochs NUM_EPOCHS]
8
+ [--lr_scheduler_type {cycle,linear}]
9
+ [--save_ckpt | --no-save_ckpt]
10
+ [--seed SEED] [--max_lr MAX_LR]
11
+ [--target {trial_type,sex,gender}]
12
+ [--num_workers NUM_WORKERS]
13
+ [--weight_decay WEIGHT_DECAY]
14
+ HCP_downstream_raw_flatmaps.py: error: argument --target: invalid choice: 'age' (choose from 'trial_type', 'sex', 'gender')
541286.out ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-136-5
3
+ MASTER_PORT=18510
4
+ WORLD_SIZE=1
5
+ PID of this process = 1032528
541287.err ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [NbConvertApp] Converting notebook HCP_downstream_raw_flatmaps.ipynb to python
2
+ [NbConvertApp] Writing 36402 bytes to HCP_downstream_raw_flatmaps.py
3
+ wandb: Using wandb-core as the SDK backend. Please refer to https://wandb.me/wandb-core for more information.
4
+ wandb: Currently logged in as: ckadirt. Use `wandb login --relogin` to force relogin
5
+ wandb: Tracking run with wandb version 0.18.3
6
+ wandb: Run data is saved locally in /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/wandb/run-20241126_215001-HCPflat_raw_beta_age_83810
7
+ wandb: Run `wandb offline` to turn off syncing.
8
+ wandb: Syncing run HCPflat_raw_beta_age
9
+ wandb: ⭐️ View project at https://stability.wandb.io/ckadirt/fMRI-foundation-model
10
+ wandb: 🚀 View run at https://stability.wandb.io/ckadirt/fMRI-foundation-model/runs/HCPflat_raw_beta_age_83810
11
+
12
+ return F.mse_loss(input, target, reduction=self.reduction)
13
+
14
+ return F.mse_loss(input, target, reduction=self.reduction)
15
+
16
+
17
+ return F.mse_loss(input, target, reduction=self.reduction)
18
+
19
+
20
+ slurmstepd: error: *** JOB 541287 ON ip-10-0-136-5 CANCELLED AT 2024-11-26T21:59:19 ***
21
+ slurmstepd: error: *** REASON: burst_buffer/lua: Stage-out in progress ***
541287.out ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-136-5
3
+ MASTER_PORT=17942
4
+ WORLD_SIZE=1
5
+ PID of this process = 1046807
6
+ ------ ARGS -------
7
+ Namespace(model_suffix='beta', hcp_flat_path='/weka/proj-medarc/shared/HCP-Flat', batch_size=128, wandb_log=True, num_epochs=20, lr_scheduler_type='cycle', save_ckpt=False, seed=42, max_lr=0.1, target='age', num_workers=15, weight_decay=1e-05)
8
+ Input dimension: 737280
9
+ total_steps 17400
10
+ wandb_config:
11
+ {'model_name': 'HCPflat_raw_age', 'batch_size': 128, 'weight_decay': 1e-05, 'num_epochs': 20, 'seed': 42, 'lr_scheduler_type': 'cycle', 'save_ckpt': False, 'max_lr': 0.1, 'target': 'age', 'num_workers': 15}
12
+ wandb_id: HCPflat_raw_beta_age_83810
13
+ Step [100/870] - Training Loss: 924.1876 - Training MSE: 207942.1405
14
+ Step [200/870] - Training Loss: 2762.3567 - Training MSE: 206121.1501
15
+ Step [300/870] - Training Loss: 22823.8477 - Training MSE: 690589.0472
16
+ Step [400/870] - Training Loss: 99405.8828 - Training MSE: 1767819.3204
17
+ Step [500/870] - Training Loss: 214733.7188 - Training MSE: 4693776.8283
18
+ Step [600/870] - Training Loss: 263763.7500 - Training MSE: 8583782.2903
19
+ Step [700/870] - Training Loss: 397232.1875 - Training MSE: 13775790.2974
20
+ Step [800/870] - Training Loss: 665133.5000 - Training MSE: 21325931.7302
21
+ Epoch [1/20] - Training Loss: 229616.0744, Training MSE: 29363571.6190 - Validation Loss: 1573111.9296, Validation MSE: 200990315.8497
541290.err ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [NbConvertApp] Converting notebook HCP_downstream_raw_flatmaps.ipynb to python
2
+ [NbConvertApp] Writing 36445 bytes to HCP_downstream_raw_flatmaps.py
3
+ wandb: Using wandb-core as the SDK backend. Please refer to https://wandb.me/wandb-core for more information.
4
+ wandb: Currently logged in as: ckadirt. Use `wandb login --relogin` to force relogin
5
+ wandb: Tracking run with wandb version 0.18.3
6
+ wandb: Run data is saved locally in /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/wandb/run-20241126_220105-HCPflat_raw_beta_age_7cc4d250-ac94-488c-bec4-39b422ee70de
7
+ wandb: Run `wandb offline` to turn off syncing.
8
+ wandb: Syncing run HCPflat_raw_beta_age
9
+ wandb: ⭐️ View project at https://stability.wandb.io/ckadirt/fMRI-foundation-model
10
+ wandb: 🚀 View run at https://stability.wandb.io/ckadirt/fMRI-foundation-model/runs/HCPflat_raw_beta_age_7cc4d250-ac94-488c-bec4-39b422ee70de
11
+
12
+ return F.mse_loss(input, target, reduction=self.reduction)
13
+
14
+ return F.mse_loss(input, target, reduction=self.reduction)
15
+
16
+
17
+ slurmstepd: error: *** JOB 541290 ON ip-10-0-136-5 CANCELLED AT 2024-11-26T22:08:55 ***
18
+ slurmstepd: error: *** REASON: burst_buffer/lua: Stage-out in progress ***
541290.out ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-136-5
3
+ MASTER_PORT=11785
4
+ WORLD_SIZE=1
5
+ PID of this process = 1101409
6
+ ------ ARGS -------
7
+ Namespace(model_suffix='beta', hcp_flat_path='/weka/proj-medarc/shared/HCP-Flat', batch_size=128, wandb_log=True, num_epochs=20, lr_scheduler_type='cycle', save_ckpt=False, seed=42, max_lr=0.001, target='age', num_workers=15, weight_decay=1e-05)
8
+ Input dimension: 737280
9
+ total_steps 17400
10
+ wandb_config:
11
+ {'model_name': 'HCPflat_raw_age', 'batch_size': 128, 'weight_decay': 1e-05, 'num_epochs': 20, 'seed': 42, 'lr_scheduler_type': 'cycle', 'save_ckpt': False, 'max_lr': 0.001, 'target': 'age', 'num_workers': 15}
12
+ wandb_id: HCPflat_raw_beta_age_7cc4d250-ac94-488c-bec4-39b422ee70de
13
+ Step [100/870] - Training Loss: 0.7004 - Training MSE: 98.7605
14
+ Step [200/870] - Training Loss: 0.9553 - Training MSE: 104.1519
15
+ Step [300/870] - Training Loss: 1.9018 - Training MSE: 129.4920
16
+ Step [400/870] - Training Loss: 5.3471 - Training MSE: 222.5458
17
+ Step [500/870] - Training Loss: 15.9923 - Training MSE: 460.4371
18
+ Step [600/870] - Training Loss: 32.0503 - Training MSE: 927.5124
19
+ Step [700/870] - Training Loss: 70.9650 - Training MSE: 1574.1360
20
+ Step [800/870] - Training Loss: 80.0552 - Training MSE: 2592.0538
541293.err ADDED
The diff for this file is too large to render. See raw diff
 
541293.out ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-131-135
3
+ MASTER_PORT=18962
4
+ WORLD_SIZE=1
5
+ PID of this process = 1324243
6
+ ------ ARGS -------
7
+ Namespace(model_suffix='beta', hcp_flat_path='/weka/proj-medarc/shared/HCP-Flat', batch_size=128, wandb_log=True, num_epochs=20, lr_scheduler_type='cycle', save_ckpt=False, seed=42, max_lr=0.001, target='age', num_workers=15, weight_decay=1e-05)
8
+ Input dimension: 737280
9
+ total_steps 17400
10
+ wandb_config:
11
+ {'model_name': 'HCPflat_raw_age', 'batch_size': 128, 'weight_decay': 1e-05, 'num_epochs': 20, 'seed': 42, 'lr_scheduler_type': 'cycle', 'save_ckpt': False, 'max_lr': 0.001, 'target': 'age', 'num_workers': 15}
12
+ wandb_id: HCPflat_raw_beta_age_9a3e14f1-ec90-47c9-a06e-a395872f2271
13
+ Step [100/870] - Training Loss: 0.7004 - Training MSE: 98.7605
14
+ Step [200/870] - Training Loss: 0.9553 - Training MSE: 104.1519
15
+ Step [300/870] - Training Loss: 1.9018 - Training MSE: 129.4920
16
+ Step [400/870] - Training Loss: 5.3471 - Training MSE: 222.5458
17
+ Step [500/870] - Training Loss: 15.9923 - Training MSE: 460.4371
18
+ Step [600/870] - Training Loss: 32.0503 - Training MSE: 927.5124
19
+ Step [700/870] - Training Loss: 70.9650 - Training MSE: 1574.1360
20
+ Step [800/870] - Training Loss: 80.0552 - Training MSE: 2592.0538
21
+ Epoch [1/20] - Training Loss: 27.4343, Training MSE: 3507.0528 - Validation Loss: 131.3325, Validation MSE: 16734.0162
22
+ Step [100/870] - Training Loss: 225.2205 - Training MSE: 30714.7531
23
+ Step [200/870] - Training Loss: 292.3234 - Training MSE: 33573.5262
24
+ Step [300/870] - Training Loss: 292.7283 - Training MSE: 36038.9369
25
+ Step [400/870] - Training Loss: 299.2356 - Training MSE: 37454.6156
26
+ Step [500/870] - Training Loss: 443.3794 - Training MSE: 38764.3162
27
+ Step [600/870] - Training Loss: 427.7180 - Training MSE: 41074.9210
28
+ Step [700/870] - Training Loss: 394.7606 - Training MSE: 42823.9646
29
+ Step [800/870] - Training Loss: 427.3995 - Training MSE: 44576.2413
30
+ Epoch [2/20] - Training Loss: 355.6319, Training MSE: 45505.3376 - Validation Loss: 424.2622, Validation MSE: 54209.6258
31
+ Step [100/870] - Training Loss: 616.6658 - Training MSE: 91859.6765
32
+ Step [200/870] - Training Loss: 594.7969 - Training MSE: 88332.5994
33
+ Step [300/870] - Training Loss: 599.6354 - Training MSE: 89295.5247
34
+ Step [400/870] - Training Loss: 575.7101 - Training MSE: 88032.4892
35
+ Step [500/870] - Training Loss: 503.4290 - Training MSE: 87341.0175
36
+ Step [600/870] - Training Loss: 449.5532 - Training MSE: 86012.6966
37
+ Step [700/870] - Training Loss: 693.0297 - Training MSE: 85016.7206
38
+ Step [800/870] - Training Loss: 551.1360 - Training MSE: 83246.9525
39
+ Epoch [3/20] - Training Loss: 641.0600, Training MSE: 82029.1618 - Validation Loss: 380.8437, Validation MSE: 48652.5277
40
+ Step [100/870] - Training Loss: 595.5380 - Training MSE: 66653.8484
41
+ Step [200/870] - Training Loss: 620.8188 - Training MSE: 64999.0662
42
+ Step [300/870] - Training Loss: 814.8269 - Training MSE: 64970.9618
43
+ Step [400/870] - Training Loss: 465.9383 - Training MSE: 65667.7809
44
+ Step [500/870] - Training Loss: 468.5602 - Training MSE: 64540.3150
45
+ Step [600/870] - Training Loss: 567.9731 - Training MSE: 63776.4097
46
+ Step [700/870] - Training Loss: 458.1937 - Training MSE: 62471.3650
47
+ Step [800/870] - Training Loss: 486.8877 - Training MSE: 61673.2599
48
+ Epoch [4/20] - Training Loss: 475.5952, Training MSE: 60863.9278 - Validation Loss: 230.0277, Validation MSE: 29384.7977
49
+ Step [100/870] - Training Loss: 312.2596 - Training MSE: 43578.8527
50
+ Step [200/870] - Training Loss: 289.8408 - Training MSE: 43494.8653
51
+ Step [300/870] - Training Loss: 367.2291 - Training MSE: 42418.5304
52
+ Step [400/870] - Training Loss: 367.6751 - Training MSE: 42794.9546
53
+ Step [500/870] - Training Loss: 250.6227 - Training MSE: 42133.1672
54
+ Step [600/870] - Training Loss: 224.6889 - Training MSE: 41366.5701
55
+ Step [700/870] - Training Loss: 297.7198 - Training MSE: 40742.5247
56
+ Step [800/870] - Training Loss: 285.0359 - Training MSE: 40988.5822
57
+ Epoch [5/20] - Training Loss: 320.3213, Training MSE: 40992.2368 - Validation Loss: 343.8250, Validation MSE: 43935.6901
58
+ Step [100/870] - Training Loss: 403.4899 - Training MSE: 41564.5185
59
+ Step [200/870] - Training Loss: 280.5116 - Training MSE: 38702.8446
60
+ Step [300/870] - Training Loss: 197.1333 - Training MSE: 37270.6040
61
+ Step [400/870] - Training Loss: 219.3125 - Training MSE: 36088.7097
62
+ Step [500/870] - Training Loss: 214.0476 - Training MSE: 36101.8102
63
+ Step [600/870] - Training Loss: 249.8342 - Training MSE: 35435.7052
64
+ Step [700/870] - Training Loss: 253.3519 - Training MSE: 35137.2864
65
+ Step [800/870] - Training Loss: 260.9366 - Training MSE: 35056.1371
66
+ Epoch [6/20] - Training Loss: 272.7941, Training MSE: 34906.8847 - Validation Loss: 181.5033, Validation MSE: 23178.8234
67
+ Step [100/870] - Training Loss: 259.5545 - Training MSE: 41335.3267
68
+ Step [200/870] - Training Loss: 267.8753 - Training MSE: 38545.9863
69
+ Step [300/870] - Training Loss: 279.0856 - Training MSE: 38170.9948
70
+ Step [400/870] - Training Loss: 253.6445 - Training MSE: 36542.9225
71
+ Step [500/870] - Training Loss: 270.2076 - Training MSE: 35589.3113
72
+ Step [600/870] - Training Loss: 238.1767 - Training MSE: 34781.3647
73
+ Step [700/870] - Training Loss: 210.1095 - Training MSE: 34110.7147
74
+ Step [800/870] - Training Loss: 170.0861 - Training MSE: 33597.5924
75
+ Epoch [7/20] - Training Loss: 260.1132, Training MSE: 33286.1531 - Validation Loss: 149.1776, Validation MSE: 19066.1705
76
+ Step [100/870] - Training Loss: 213.6669 - Training MSE: 30238.3354
77
+ Step [200/870] - Training Loss: 280.7238 - Training MSE: 37416.2637
78
+ Step [300/870] - Training Loss: 199.6157 - Training MSE: 35362.4516
79
+ Step [400/870] - Training Loss: 293.6560 - Training MSE: 34585.9442
80
+ Step [500/870] - Training Loss: 243.5896 - Training MSE: 33888.9126
81
+ Step [600/870] - Training Loss: 250.7629 - Training MSE: 33711.0958
82
+ Step [700/870] - Training Loss: 204.3937 - Training MSE: 33619.7849
83
+ Step [800/870] - Training Loss: 297.2823 - Training MSE: 32938.8256
84
+ Epoch [8/20] - Training Loss: 253.8449, Training MSE: 32483.8266 - Validation Loss: 138.4049, Validation MSE: 17682.2886
85
+ Step [100/870] - Training Loss: 185.7414 - Training MSE: 26811.0968
86
+ Step [200/870] - Training Loss: 218.8939 - Training MSE: 26100.9550
87
+ Step [300/870] - Training Loss: 162.8873 - Training MSE: 26417.2719
88
+ Step [400/870] - Training Loss: 161.6969 - Training MSE: 25955.3044
89
+ Step [500/870] - Training Loss: 207.4261 - Training MSE: 25493.3734
90
+ Step [600/870] - Training Loss: 187.3801 - Training MSE: 25508.5498
91
+ Step [700/870] - Training Loss: 214.4618 - Training MSE: 25381.5527
92
+ Step [800/870] - Training Loss: 180.7133 - Training MSE: 25397.3536
93
+ Epoch [9/20] - Training Loss: 196.7826, Training MSE: 25180.1054 - Validation Loss: 116.9404, Validation MSE: 14922.8448
94
+ Step [100/870] - Training Loss: 156.8096 - Training MSE: 21927.3050
95
+ Step [200/870] - Training Loss: 150.6434 - Training MSE: 20166.1289
96
+ Step [300/870] - Training Loss: 156.5338 - Training MSE: 19752.6387
97
+ Step [400/870] - Training Loss: 115.4449 - Training MSE: 19134.1077
98
+ Step [500/870] - Training Loss: 151.5466 - Training MSE: 18829.4417
99
+ Step [600/870] - Training Loss: 133.8123 - Training MSE: 19151.8094
100
+ Step [700/870] - Training Loss: 150.4475 - Training MSE: 19053.8740
101
+ Step [800/870] - Training Loss: 134.3665 - Training MSE: 18898.9213
102
+ Epoch [10/20] - Training Loss: 145.9114, Training MSE: 18671.6165 - Validation Loss: 84.6188, Validation MSE: 10794.5938
103
+ Step [100/870] - Training Loss: 110.3017 - Training MSE: 14012.7743
104
+ Step [200/870] - Training Loss: 89.6949 - Training MSE: 13419.7123
105
+ Step [300/870] - Training Loss: 99.2646 - Training MSE: 13079.7575
106
+ Step [400/870] - Training Loss: 93.9918 - Training MSE: 12765.8371
107
+ Step [500/870] - Training Loss: 88.8151 - Training MSE: 12486.5892
108
+ Step [600/870] - Training Loss: 143.9832 - Training MSE: 12778.8930
109
+ Step [700/870] - Training Loss: 98.1826 - Training MSE: 12722.4271
110
+ Step [800/870] - Training Loss: 69.2268 - Training MSE: 12515.3702
111
+ Epoch [11/20] - Training Loss: 97.2335, Training MSE: 12443.2557 - Validation Loss: 49.3342, Validation MSE: 6300.2935
112
+ Step [100/870] - Training Loss: 84.1289 - Training MSE: 12731.3686
113
+ Step [200/870] - Training Loss: 101.6131 - Training MSE: 11380.9970
114
+ Step [300/870] - Training Loss: 68.8949 - Training MSE: 10543.4813
115
+ Step [400/870] - Training Loss: 67.8553 - Training MSE: 9954.5183
116
+ Step [500/870] - Training Loss: 69.3201 - Training MSE: 9525.7463
117
+ Step [600/870] - Training Loss: 61.4179 - Training MSE: 9232.0457
118
+ Step [700/870] - Training Loss: 58.9125 - Training MSE: 8939.9569
119
+ Step [800/870] - Training Loss: 61.9412 - Training MSE: 8919.2549
120
+ Epoch [12/20] - Training Loss: 68.8162, Training MSE: 8806.7756 - Validation Loss: 34.1533, Validation MSE: 4359.8410
121
+ Step [100/870] - Training Loss: 39.4785 - Training MSE: 5607.7454
122
+ Step [200/870] - Training Loss: 43.6887 - Training MSE: 5866.7379
123
+ Step [300/870] - Training Loss: 51.5316 - Training MSE: 5913.9918
124
+ Step [400/870] - Training Loss: 44.5591 - Training MSE: 5827.7686
125
+ Step [500/870] - Training Loss: 56.4356 - Training MSE: 5818.0397
126
+ Step [600/870] - Training Loss: 64.3104 - Training MSE: 6190.6625
127
+ Step [700/870] - Training Loss: 45.7098 - Training MSE: 6203.7776
128
+ Step [800/870] - Training Loss: 37.0419 - Training MSE: 6119.6922
129
+ Epoch [13/20] - Training Loss: 47.2533, Training MSE: 6047.1326 - Validation Loss: 24.4559, Validation MSE: 3123.7767
130
+ Step [100/870] - Training Loss: 24.0725 - Training MSE: 4543.2675
131
+ Step [200/870] - Training Loss: 33.1887 - Training MSE: 4195.8679
132
+ Step [300/870] - Training Loss: 27.0619 - Training MSE: 4041.4841
133
+ Step [400/870] - Training Loss: 39.4217 - Training MSE: 4002.0279
134
+ Step [500/870] - Training Loss: 31.7641 - Training MSE: 4235.0661
135
+ Step [600/870] - Training Loss: 25.3477 - Training MSE: 4154.7053
136
+ Step [700/870] - Training Loss: 28.7334 - Training MSE: 4054.2543
137
+ Step [800/870] - Training Loss: 25.1178 - Training MSE: 3951.9298
138
+ Epoch [14/20] - Training Loss: 30.4371, Training MSE: 3894.8694 - Validation Loss: 15.2119, Validation MSE: 1942.3499
139
+ Step [100/870] - Training Loss: 19.7150 - Training MSE: 2138.6110
140
+ Step [200/870] - Training Loss: 14.8900 - Training MSE: 2099.8135
141
+ Step [300/870] - Training Loss: 14.9437 - Training MSE: 2029.9849
142
+ Step [400/870] - Training Loss: 16.5218 - Training MSE: 1988.6470
143
+ Step [500/870] - Training Loss: 13.5388 - Training MSE: 1959.2617
144
+ Step [600/870] - Training Loss: 12.7145 - Training MSE: 1932.0582
145
+ Step [700/870] - Training Loss: 15.4000 - Training MSE: 1935.8872
146
+ Step [800/870] - Training Loss: 12.4422 - Training MSE: 2013.0126
147
+ Epoch [15/20] - Training Loss: 15.5981, Training MSE: 1996.1209 - Validation Loss: 7.5625, Validation MSE: 966.0334
148
+ Step [100/870] - Training Loss: 10.2901 - Training MSE: 2687.8184
149
+ Step [200/870] - Training Loss: 11.1747 - Training MSE: 1969.2730
150
+ Step [300/870] - Training Loss: 6.5812 - Training MSE: 1654.0797
151
+ Step [400/870] - Training Loss: 7.1049 - Training MSE: 1479.5801
152
+ Step [500/870] - Training Loss: 6.1494 - Training MSE: 1376.3151
153
+ Step [600/870] - Training Loss: 8.5310 - Training MSE: 1297.4019
154
+ Step [700/870] - Training Loss: 7.0269 - Training MSE: 1241.7873
155
+ Step [800/870] - Training Loss: 7.1375 - Training MSE: 1190.3315
156
+ Epoch [16/20] - Training Loss: 9.0716, Training MSE: 1160.8802 - Validation Loss: 3.7649, Validation MSE: 481.1624
157
+ Step [100/870] - Training Loss: 3.1061 - Training MSE: 448.2485
158
+ Step [200/870] - Training Loss: 2.6831 - Training MSE: 443.6960
159
+ Step [300/870] - Training Loss: 3.3528 - Training MSE: 438.0512
160
+ Step [400/870] - Training Loss: 9.4740 - Training MSE: 675.8739
161
+ Step [500/870] - Training Loss: 4.1480 - Training MSE: 691.1889
162
+ Step [600/870] - Training Loss: 4.2169 - Training MSE: 668.9939
163
+ Step [700/870] - Training Loss: 3.0901 - Training MSE: 646.7708
164
+ Step [800/870] - Training Loss: 5.0069 - Training MSE: 628.2751
165
+ Epoch [17/20] - Training Loss: 4.8296, Training MSE: 617.9883 - Validation Loss: 2.7624, Validation MSE: 352.8308
166
+ Step [100/870] - Training Loss: 2.7670 - Training MSE: 320.1880
167
+ Step [200/870] - Training Loss: 1.6207 - Training MSE: 287.7513
168
+ Step [300/870] - Training Loss: 1.9942 - Training MSE: 275.3315
169
+ Step [400/870] - Training Loss: 2.2564 - Training MSE: 270.3133
170
+ Step [500/870] - Training Loss: 1.6254 - Training MSE: 266.9202
171
+ Step [600/870] - Training Loss: 1.7127 - Training MSE: 264.0805
172
+ Step [700/870] - Training Loss: 1.5853 - Training MSE: 261.9605
173
+ Step [800/870] - Training Loss: 1.9506 - Training MSE: 261.0231
174
+ Epoch [18/20] - Training Loss: 2.0329, Training MSE: 260.1193 - Validation Loss: 1.7839, Validation MSE: 227.7603
175
+ Step [100/870] - Training Loss: 1.1409 - Training MSE: 143.1174
176
+ Step [200/870] - Training Loss: 1.1094 - Training MSE: 152.5059
177
+ Step [300/870] - Training Loss: 1.2674 - Training MSE: 157.0374
178
+ Step [400/870] - Training Loss: 1.0359 - Training MSE: 155.5929
179
+ Step [500/870] - Training Loss: 1.1091 - Training MSE: 155.0004
180
+ Step [600/870] - Training Loss: 1.1539 - Training MSE: 155.3943
181
+ Step [700/870] - Training Loss: 1.2641 - Training MSE: 155.1105
182
+ Step [800/870] - Training Loss: 1.2053 - Training MSE: 155.1447
183
+ Epoch [19/20] - Training Loss: 1.2139, Training MSE: 155.3429 - Validation Loss: 1.5769, Validation MSE: 201.3158
184
+ Step [100/870] - Training Loss: 1.0962 - Training MSE: 117.9358
185
+ Step [200/870] - Training Loss: 0.8717 - Training MSE: 117.8234
186
+ Step [300/870] - Training Loss: 0.8542 - Training MSE: 118.7729
187
+ Step [400/870] - Training Loss: 1.0950 - Training MSE: 119.2174
188
+ Step [500/870] - Training Loss: 1.1080 - Training MSE: 119.1448
189
+ Step [600/870] - Training Loss: 1.0546 - Training MSE: 118.9895
190
+ Step [700/870] - Training Loss: 0.8502 - Training MSE: 119.4526
191
+ Step [800/870] - Training Loss: 0.7913 - Training MSE: 119.7514
192
+ Epoch [20/20] - Training Loss: 0.9381, Training MSE: 120.0448 - Validation Loss: 1.5444, Validation MSE: 197.2017
193
+ wandb: 🚀 View run HCPflat_raw_beta_age at: https://stability.wandb.io/ckadirt/fMRI-foundation-model/runs/HCPflat_raw_beta_age_9a3e14f1-ec90-47c9-a06e-a395872f2271
194
+ wandb: Find logs at: wandb/run-20241126_221003-HCPflat_raw_beta_age_9a3e14f1-ec90-47c9-a06e-a395872f2271/logs
541294.err ADDED
The diff for this file is too large to render. See raw diff
 
541294.out ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-135-126
3
+ MASTER_PORT=16509
4
+ WORLD_SIZE=1
5
+ ------ ARGS -------
6
+ Namespace(found_model_name='HCPflat_large_gsrFalse_', epoch_checkpoint='epoch99.pth', model_suffix='beta', hcp_flat_path='/weka/proj-medarc/shared/HCP-Flat', batch_size=16, wandb_log=True, num_epochs=20, lr_scheduler_type='cycle', save_ckpt=False, seed=42, max_lr=3e-05, target='age', num_workers=15, weight_decay=0.001, global_pool=True)
7
+ outdir /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/checkpoints/HCPflat_large_gsrFalse_
8
+ Loaded config.yaml from ckpt folder /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/checkpoints/HCPflat_large_gsrFalse_
9
+
10
+ __CONFIG__
11
+ base_lr = 0.001
12
+ batch_size = 32
13
+ ckpt_interval = 5
14
+ ckpt_saving = True
15
+ cls_embed = True
16
+ contrastive_loss_weight = 1.0
17
+ datasets_to_include = HCP
18
+ decoder_embed_dim = 512
19
+ grad_accumulation_steps = 1
20
+ grad_clip = 1.0
21
+ gsr = False
22
+ hcp_flat_path = /weka/proj-medarc/shared/HCP-Flat
23
+ mask_ratio = 0.75
24
+ model_name = HCPflat_large_gsrFalse_
25
+ no_qkv_bias = False
26
+ norm_pix_loss = False
27
+ nsd_flat_path = /weka/proj-medarc/shared/NSD-Flat
28
+ num_epochs = 100
29
+ num_frames = 16
30
+ num_samples_per_epoch = 200000
31
+ num_workers = 10
32
+ patch_size = 16
33
+ pct_masks_to_decode = 1
34
+ plotting = True
35
+ pred_t_dim = 8
36
+ print_interval = 20
37
+ probe_base_lr = 0.0003
38
+ probe_batch_size = 8
39
+ probe_num_epochs = 30
40
+ probe_num_samples_per_epoch = 100000
41
+ resume_from_ckpt = True
42
+ seed = 42
43
+ sep_pos_embed = True
44
+ t_patch_size = 2
45
+ test_num_samples_per_epoch = 50000
46
+ test_set = False
47
+ trunc_init = False
48
+ use_contrastive_loss = False
49
+ wandb_log = True
50
+
51
+
52
+ WORLD_SIZE=1
53
+ PID of this process = 2074741
54
+ global_pool = True
55
+ gsr = False
56
+ Creating datasets
57
+ Datasets ready
58
+ img_size (144, 320) patch_size (16, 16) frames 16 t_patch_size 2
59
+ model initialized
60
+ latest_checkpoint: epoch99.pth
61
+
62
+ Loaded checkpoint epoch99.pth from /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/checkpoints/HCPflat_large_gsrFalse_
63
+
64
+ Input dimension: 1024
65
+ total_steps 139140
66
+ wandb_config:
67
+ {'model_name': 'HCPflat_large_gsrFalse__HCP_FT_age', 'batch_size': 16, 'weight_decay': 0.001, 'num_epochs': 20, 'seed': 42, 'lr_scheduler_type': 'cycle', 'save_ckpt': False, 'max_lr': 3e-05, 'target': 'age', 'num_workers': 15}
68
+ wandb_id: HCPflat_large_gsrFalse__beta_age_HCPFT_185e68b7-ea11-4f13-b6c7-a9ecc17084b1
69
+ Step [100/6957] - Training Loss: 0.3892 - Training MSE: 8.0130
70
+ Step [200/6957] - Training Loss: 0.4409 - Training MSE: 7.4482
71
+ Step [300/6957] - Training Loss: 0.5592 - Training MSE: 7.3383
72
+ Step [400/6957] - Training Loss: 0.5652 - Training MSE: 7.1366
73
+ Step [500/6957] - Training Loss: 0.3701 - Training MSE: 7.0621
74
+ Step [600/6957] - Training Loss: 0.3159 - Training MSE: 6.9860
75
+ Step [700/6957] - Training Loss: 0.3431 - Training MSE: 6.9015
76
+ Step [800/6957] - Training Loss: 0.5229 - Training MSE: 6.8741
77
+ Step [900/6957] - Training Loss: 0.6388 - Training MSE: 6.8505
78
+ Step [1000/6957] - Training Loss: 0.5065 - Training MSE: 6.8173
79
+ Step [1100/6957] - Training Loss: 0.4181 - Training MSE: 6.8281
80
+ Step [1200/6957] - Training Loss: 0.3158 - Training MSE: 6.8081
81
+ Step [1300/6957] - Training Loss: 0.3294 - Training MSE: 6.8239
82
+ Step [1400/6957] - Training Loss: 0.4973 - Training MSE: 6.8025
83
+ Step [1500/6957] - Training Loss: 0.3820 - Training MSE: 6.7897
84
+ Step [1600/6957] - Training Loss: 0.3106 - Training MSE: 6.7547
85
+ Step [1700/6957] - Training Loss: 0.4086 - Training MSE: 6.7618
86
+ Step [1800/6957] - Training Loss: 0.5164 - Training MSE: 6.7494
87
+ Step [1900/6957] - Training Loss: 0.3825 - Training MSE: 6.7591
88
+ Step [2000/6957] - Training Loss: 0.7149 - Training MSE: 6.7480
89
+ Step [2100/6957] - Training Loss: 0.3802 - Training MSE: 6.7397
90
+ Step [2200/6957] - Training Loss: 0.3562 - Training MSE: 6.7415
91
+ Step [2300/6957] - Training Loss: 0.2990 - Training MSE: 6.7273
92
+ Step [2400/6957] - Training Loss: 0.6899 - Training MSE: 6.7225
93
+ Step [2500/6957] - Training Loss: 0.4890 - Training MSE: 6.7216
94
+ Step [2600/6957] - Training Loss: 0.3221 - Training MSE: 6.7234
95
+ Step [2700/6957] - Training Loss: 0.4387 - Training MSE: 6.7172
96
+ Step [2800/6957] - Training Loss: 0.5289 - Training MSE: 6.7050
97
+ Step [2900/6957] - Training Loss: 0.3853 - Training MSE: 6.6949
98
+ Step [3000/6957] - Training Loss: 0.5635 - Training MSE: 6.6938
99
+ Step [3100/6957] - Training Loss: 0.2955 - Training MSE: 6.6832
100
+ Step [3200/6957] - Training Loss: 0.4344 - Training MSE: 6.6789
101
+ Step [3300/6957] - Training Loss: 0.6001 - Training MSE: 6.6725
102
+ Step [3400/6957] - Training Loss: 0.5012 - Training MSE: 6.6781
103
+ Step [3500/6957] - Training Loss: 0.4927 - Training MSE: 6.6781
104
+ Step [3600/6957] - Training Loss: 0.4414 - Training MSE: 6.6745
105
+ Step [3700/6957] - Training Loss: 0.5066 - Training MSE: 6.6728
106
+ Step [3800/6957] - Training Loss: 0.2950 - Training MSE: 6.6748
107
+ Step [3900/6957] - Training Loss: 0.1609 - Training MSE: 6.6664
108
+ Step [4000/6957] - Training Loss: 0.5618 - Training MSE: 6.6716
109
+ Step [4100/6957] - Training Loss: 0.3337 - Training MSE: 6.6691
110
+ Step [4200/6957] - Training Loss: 0.2716 - Training MSE: 6.6694
111
+ Step [4300/6957] - Training Loss: 0.5301 - Training MSE: 6.6661
112
+ Step [4400/6957] - Training Loss: 0.4866 - Training MSE: 6.6675
113
+ Step [4500/6957] - Training Loss: 0.5047 - Training MSE: 6.6645
114
+ Step [4600/6957] - Training Loss: 0.6342 - Training MSE: 6.6686
115
+ Step [4700/6957] - Training Loss: 0.2574 - Training MSE: 6.6664
116
+ Step [4800/6957] - Training Loss: 0.3241 - Training MSE: 6.6717
117
+ Step [4900/6957] - Training Loss: 0.3252 - Training MSE: 6.6633
118
+ Step [5000/6957] - Training Loss: 0.3624 - Training MSE: 6.6600
119
+ Step [5100/6957] - Training Loss: 0.1873 - Training MSE: 6.6616
120
+ Step [5200/6957] - Training Loss: 0.2979 - Training MSE: 6.6636
121
+ Step [5300/6957] - Training Loss: 0.7098 - Training MSE: 6.6670
122
+ Step [5400/6957] - Training Loss: 0.4409 - Training MSE: 6.6670
123
+ Step [5500/6957] - Training Loss: 0.7333 - Training MSE: 6.6724
124
+ Step [5600/6957] - Training Loss: 0.4391 - Training MSE: 6.6729
125
+ Step [5700/6957] - Training Loss: 0.2962 - Training MSE: 6.6756
126
+ Step [5800/6957] - Training Loss: 0.2363 - Training MSE: 6.6706
127
+ Step [5900/6957] - Training Loss: 0.2784 - Training MSE: 6.6740
128
+ Step [6000/6957] - Training Loss: 0.2351 - Training MSE: 6.6702
129
+ Step [6100/6957] - Training Loss: 0.3995 - Training MSE: 6.6634
130
+ Step [6200/6957] - Training Loss: 0.3206 - Training MSE: 6.6642
131
+ Step [6300/6957] - Training Loss: 0.6845 - Training MSE: 6.6648
132
+ Step [6400/6957] - Training Loss: 0.2888 - Training MSE: 6.6643
133
+ Step [6500/6957] - Training Loss: 0.3775 - Training MSE: 6.6611
134
+ Step [6600/6957] - Training Loss: 0.4634 - Training MSE: 6.6647
135
+ Step [6700/6957] - Training Loss: 0.3760 - Training MSE: 6.6631
136
+ Step [6800/6957] - Training Loss: 0.4631 - Training MSE: 6.6617
137
+ Step [6900/6957] - Training Loss: 0.5500 - Training MSE: 6.6584
138
+ Epoch [1/20] - Training Loss: 0.4160, Training MSE: 6.6562 - Validation Loss: 0.3768, Validation MSE: 6.0284
139
+ Step [100/6957] - Training Loss: 0.3951 - Training MSE: 6.8452
140
+ Step [200/6957] - Training Loss: 0.3693 - Training MSE: 6.8970
141
+ Step [300/6957] - Training Loss: 0.2880 - Training MSE: 6.7960
142
+ Step [400/6957] - Training Loss: 0.3614 - Training MSE: 6.6778
143
+ Step [500/6957] - Training Loss: 0.3836 - Training MSE: 6.7002
144
+ Step [600/6957] - Training Loss: 0.2527 - Training MSE: 6.6670
145
+ Step [700/6957] - Training Loss: 0.5024 - Training MSE: 6.6715
146
+ Step [800/6957] - Training Loss: 0.2082 - Training MSE: 6.6020
147
+ Step [900/6957] - Training Loss: 0.3287 - Training MSE: 6.6174
148
+ Step [1000/6957] - Training Loss: 0.3772 - Training MSE: 6.6493
149
+ Step [1100/6957] - Training Loss: 0.3960 - Training MSE: 6.6507
150
+ Step [1200/6957] - Training Loss: 0.3269 - Training MSE: 6.6264
151
+ Step [1300/6957] - Training Loss: 0.2354 - Training MSE: 6.6205
152
+ Step [1400/6957] - Training Loss: 0.7361 - Training MSE: 6.6152
153
+ Step [1500/6957] - Training Loss: 0.4436 - Training MSE: 6.6176
154
+ Step [1600/6957] - Training Loss: 0.3962 - Training MSE: 6.6356
155
+ Step [1700/6957] - Training Loss: 0.3149 - Training MSE: 6.6642
156
+ Step [1800/6957] - Training Loss: 0.3905 - Training MSE: 6.6755
157
+ Step [1900/6957] - Training Loss: 0.4452 - Training MSE: 6.6547
158
+ Step [2000/6957] - Training Loss: 0.3680 - Training MSE: 6.6425
159
+ Step [2100/6957] - Training Loss: 0.1843 - Training MSE: 6.6410
160
+ Step [2200/6957] - Training Loss: 0.5044 - Training MSE: 6.6335
161
+ Step [2300/6957] - Training Loss: 0.3778 - Training MSE: 6.6386
162
+ Step [2400/6957] - Training Loss: 0.5021 - Training MSE: 6.6491
163
+ Step [2500/6957] - Training Loss: 0.4191 - Training MSE: 6.6336
164
+ Step [2600/6957] - Training Loss: 0.2548 - Training MSE: 6.6459
165
+ Step [2700/6957] - Training Loss: 0.2546 - Training MSE: 6.6442
166
+ Step [2800/6957] - Training Loss: 0.1904 - Training MSE: 6.6486
167
+ Step [2900/6957] - Training Loss: 0.2516 - Training MSE: 6.6311
168
+ Step [3000/6957] - Training Loss: 0.4126 - Training MSE: 6.6303
169
+ Step [3100/6957] - Training Loss: 0.4081 - Training MSE: 6.6321
170
+ Step [3200/6957] - Training Loss: 0.5542 - Training MSE: 6.6396
171
+ Step [3300/6957] - Training Loss: 0.3723 - Training MSE: 6.6398
172
+ Step [3400/6957] - Training Loss: 0.5006 - Training MSE: 6.6385
173
+ Step [3500/6957] - Training Loss: 0.3165 - Training MSE: 6.6386
174
+ Step [3600/6957] - Training Loss: 0.3776 - Training MSE: 6.6369
175
+ Step [3700/6957] - Training Loss: 0.1849 - Training MSE: 6.6355
176
+ Step [3800/6957] - Training Loss: 0.4176 - Training MSE: 6.6365
177
+ Step [3900/6957] - Training Loss: 0.3486 - Training MSE: 6.6399
178
+ Step [4000/6957] - Training Loss: 0.2917 - Training MSE: 6.6375
179
+ Step [4100/6957] - Training Loss: 0.2614 - Training MSE: 6.6338
180
+ Step [4200/6957] - Training Loss: 0.7503 - Training MSE: 6.6331
181
+ Step [4300/6957] - Training Loss: 0.5870 - Training MSE: 6.6363
182
+ Step [4400/6957] - Training Loss: 0.5433 - Training MSE: 6.6321
183
+ Step [4500/6957] - Training Loss: 0.4100 - Training MSE: 6.6228
184
+ Step [4600/6957] - Training Loss: 0.3226 - Training MSE: 6.6281
185
+ Step [4700/6957] - Training Loss: 0.3344 - Training MSE: 6.6312
186
+ Step [4800/6957] - Training Loss: 0.4366 - Training MSE: 6.6283
187
+ Step [4900/6957] - Training Loss: 0.4385 - Training MSE: 6.6264
188
+ Step [5000/6957] - Training Loss: 0.3093 - Training MSE: 6.6253
189
+ Step [5100/6957] - Training Loss: 0.3095 - Training MSE: 6.6257
190
+ Step [5200/6957] - Training Loss: 0.3786 - Training MSE: 6.6220
191
+ Step [5300/6957] - Training Loss: 0.5198 - Training MSE: 6.6179
192
+ Step [5400/6957] - Training Loss: 0.3992 - Training MSE: 6.6198
193
+ Step [5500/6957] - Training Loss: 0.1849 - Training MSE: 6.6086
194
+ Step [5600/6957] - Training Loss: 0.3177 - Training MSE: 6.6133
195
+ Step [5700/6957] - Training Loss: 0.3840 - Training MSE: 6.6121
196
+ Step [5800/6957] - Training Loss: 0.4490 - Training MSE: 6.6044
197
+ Step [5900/6957] - Training Loss: 0.5593 - Training MSE: 6.6077
198
+ Step [6000/6957] - Training Loss: 0.2385 - Training MSE: 6.6079
199
+ Step [6100/6957] - Training Loss: 0.2349 - Training MSE: 6.5971
200
+ Step [6200/6957] - Training Loss: 0.1838 - Training MSE: 6.5991
201
+ Step [6300/6957] - Training Loss: 0.5872 - Training MSE: 6.6040
202
+ Step [6400/6957] - Training Loss: 0.4445 - Training MSE: 6.5962
203
+ Step [6500/6957] - Training Loss: 0.3096 - Training MSE: 6.5968
204
+ Step [6600/6957] - Training Loss: 0.2932 - Training MSE: 6.5956
205
+ Step [6700/6957] - Training Loss: 0.3872 - Training MSE: 6.5955
206
+ Step [6800/6957] - Training Loss: 0.5766 - Training MSE: 6.5942
207
+ Step [6900/6957] - Training Loss: 0.2552 - Training MSE: 6.5962
208
+ Epoch [2/20] - Training Loss: 0.4122, Training MSE: 6.5952 - Validation Loss: 0.4057, Validation MSE: 6.4909
541338.err ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ [NbConvertApp] Converting notebook HCP_downstream_raw_flatmaps.ipynb to python
2
+ [NbConvertApp] Writing 36445 bytes to HCP_downstream_raw_flatmaps.py
3
+ slurmstepd: error: *** REASON: burst_buffer/lua: Stage-out in progress ***
4
+ slurmstepd: error: *** JOB 541338 ON ip-10-0-131-135 CANCELLED AT 2024-11-27T01:30:50 ***
5
+ slurmstepd: error: *** REASON: burst_buffer/lua: Stage-out in progress ***
541338.out ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-131-135
3
+ MASTER_PORT=15954
4
+ WORLD_SIZE=1
541339.err ADDED
The diff for this file is too large to render. See raw diff
 
541339.out ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-131-135
3
+ MASTER_PORT=15796
4
+ WORLD_SIZE=1
5
+ PID of this process = 1395696
6
+ ------ ARGS -------
7
+ Namespace(model_suffix='beta', hcp_flat_path='/weka/proj-medarc/shared/HCP-Flat', batch_size=256, wandb_log=True, num_epochs=50, lr_scheduler_type='cycle', save_ckpt=False, seed=42, max_lr=1e-05, target='age', num_workers=15, weight_decay=1e-05)
8
+ Input dimension: 737280
9
+ total_steps 21750
10
+ wandb_config:
11
+ {'model_name': 'HCPflat_raw_age', 'batch_size': 256, 'weight_decay': 1e-05, 'num_epochs': 50, 'seed': 42, 'lr_scheduler_type': 'cycle', 'save_ckpt': False, 'max_lr': 1e-05, 'target': 'age', 'num_workers': 15}
12
+ wandb_id: HCPflat_raw_beta_age_18a4fb68-2904-438d-a472-1c5e5f991d72
13
+ Step [100/435] - Training Loss: 0.5783 - Training MSE: 151.1928
14
+ Step [200/435] - Training Loss: 0.5631 - Training MSE: 149.7799
15
+ Step [300/435] - Training Loss: 0.5377 - Training MSE: 148.2206
16
+ Step [400/435] - Training Loss: 0.5397 - Training MSE: 146.6959
17
+ Epoch [1/50] - Training Loss: 0.5718, Training MSE: 146.3073 - Validation Loss: 0.5258, Validation MSE: 134.2583
18
+ Step [100/435] - Training Loss: 0.4520 - Training MSE: 130.8248
19
+ Step [200/435] - Training Loss: 0.5310 - Training MSE: 130.0619
20
+ Step [300/435] - Training Loss: 0.4768 - Training MSE: 128.8698
21
+ Step [400/435] - Training Loss: 0.4999 - Training MSE: 128.3091
22
+ Epoch [2/50] - Training Loss: 0.5001, Training MSE: 127.9771 - Validation Loss: 0.4890, Validation MSE: 124.8453
23
+ Step [100/435] - Training Loss: 0.4212 - Training MSE: 113.6132
24
+ Step [200/435] - Training Loss: 0.4401 - Training MSE: 113.5500
25
+ Step [300/435] - Training Loss: 0.4524 - Training MSE: 113.7848
26
+ Step [400/435] - Training Loss: 0.4064 - Training MSE: 113.7673
27
+ Epoch [3/50] - Training Loss: 0.4440, Training MSE: 113.6280 - Validation Loss: 0.4756, Validation MSE: 121.4521
28
+ Step [100/435] - Training Loss: 0.4088 - Training MSE: 107.9387
29
+ Step [200/435] - Training Loss: 0.4154 - Training MSE: 108.5233
30
+ Step [300/435] - Training Loss: 0.4072 - Training MSE: 108.7730
31
+ Step [400/435] - Training Loss: 0.4568 - Training MSE: 109.0231
32
+ Epoch [4/50] - Training Loss: 0.4260, Training MSE: 109.0222 - Validation Loss: 0.4641, Validation MSE: 118.5301
33
+ Step [100/435] - Training Loss: 0.3889 - Training MSE: 105.9227
34
+ Step [200/435] - Training Loss: 0.4258 - Training MSE: 106.7853
35
+ Step [300/435] - Training Loss: 0.4612 - Training MSE: 107.0059
36
+ Step [400/435] - Training Loss: 0.3901 - Training MSE: 107.3852
37
+ Epoch [5/50] - Training Loss: 0.4196, Training MSE: 107.3848 - Validation Loss: 0.4603, Validation MSE: 117.5609
38
+ Step [100/435] - Training Loss: 0.4250 - Training MSE: 106.4304
39
+ Step [200/435] - Training Loss: 0.4350 - Training MSE: 106.4364
40
+ Step [300/435] - Training Loss: 0.3817 - Training MSE: 106.3877
41
+ Step [400/435] - Training Loss: 0.4380 - Training MSE: 106.7322
42
+ Epoch [6/50] - Training Loss: 0.4172, Training MSE: 106.7691 - Validation Loss: 0.4658, Validation MSE: 118.9548
43
+ Step [100/435] - Training Loss: 0.3975 - Training MSE: 105.6768
44
+ Step [200/435] - Training Loss: 0.3800 - Training MSE: 106.7260
45
+ Step [300/435] - Training Loss: 0.3861 - Training MSE: 106.7522
46
+ Step [400/435] - Training Loss: 0.4227 - Training MSE: 106.7119
541342.err ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [NbConvertApp] Converting notebook HCP_downstream_finetune.ipynb to python
2
+ [NbConvertApp] Writing 31940 bytes to HCP_downstream_finetune.py
3
+ /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/HCP_downstream_finetune.py:658: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
4
+ state = torch.load(checkpoint_path)
5
+ wandb: Using wandb-core as the SDK backend. Please refer to https://wandb.me/wandb-core for more information.
6
+ wandb: Currently logged in as: ckadirt. Use `wandb login --relogin` to force relogin
7
+ wandb: Tracking run with wandb version 0.18.3
8
+ wandb: Run data is saved locally in /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/wandb/run-20241127_015634-HCPflat_large_gsrFalse__beta_age_HCPFT_e7c8af61-0ee0-4235-bcdb-bd61bb32c3b5
9
+ wandb: Run `wandb offline` to turn off syncing.
10
+ wandb: Syncing run HCPflat_large_gsrFalse__beta_age_HCPFT
11
+ wandb: ⭐️ View project at https://stability.wandb.io/ckadirt/fMRI-foundation-model
12
+ wandb: 🚀 View run at https://stability.wandb.io/ckadirt/fMRI-foundation-model/runs/HCPflat_large_gsrFalse__beta_age_HCPFT_e7c8af61-0ee0-4235-bcdb-bd61bb32c3b5
13
+
14
+ return F.mse_loss(input, target, reduction=self.reduction)
15
+
16
+ slurmstepd: error: *** JOB 541342 ON ip-10-0-136-5 CANCELLED AT 2024-11-27T02:00:31 ***
17
+ slurmstepd: error: *** REASON: burst_buffer/lua: Stage-out in progress ***
18
+
541342.out ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-136-5
3
+ MASTER_PORT=16336
4
+ WORLD_SIZE=1
5
+ ------ ARGS -------
6
+ Namespace(found_model_name='HCPflat_large_gsrFalse_', epoch_checkpoint='epoch99.pth', model_suffix='beta', hcp_flat_path='/weka/proj-medarc/shared/HCP-Flat', batch_size=16, wandb_log=True, num_epochs=20, lr_scheduler_type='cycle', save_ckpt=False, seed=42, max_lr=0.0001, target='age', num_workers=10, weight_decay=1e-05, global_pool=True)
7
+ outdir /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/checkpoints/HCPflat_large_gsrFalse_
8
+ Loaded config.yaml from ckpt folder /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/checkpoints/HCPflat_large_gsrFalse_
9
+
10
+ __CONFIG__
11
+ base_lr = 0.001
12
+ batch_size = 32
13
+ ckpt_interval = 5
14
+ ckpt_saving = True
15
+ cls_embed = True
16
+ contrastive_loss_weight = 1.0
17
+ datasets_to_include = HCP
18
+ decoder_embed_dim = 512
19
+ grad_accumulation_steps = 1
20
+ grad_clip = 1.0
21
+ gsr = False
22
+ hcp_flat_path = /weka/proj-medarc/shared/HCP-Flat
23
+ mask_ratio = 0.75
24
+ model_name = HCPflat_large_gsrFalse_
25
+ no_qkv_bias = False
26
+ norm_pix_loss = False
27
+ nsd_flat_path = /weka/proj-medarc/shared/NSD-Flat
28
+ num_epochs = 100
29
+ num_frames = 16
30
+ num_samples_per_epoch = 200000
31
+ num_workers = 10
32
+ patch_size = 16
33
+ pct_masks_to_decode = 1
34
+ plotting = True
35
+ pred_t_dim = 8
36
+ print_interval = 20
37
+ probe_base_lr = 0.0003
38
+ probe_batch_size = 8
39
+ probe_num_epochs = 30
40
+ probe_num_samples_per_epoch = 100000
41
+ resume_from_ckpt = True
42
+ seed = 42
43
+ sep_pos_embed = True
44
+ t_patch_size = 2
45
+ test_num_samples_per_epoch = 50000
46
+ test_set = False
47
+ trunc_init = False
48
+ use_contrastive_loss = False
49
+ wandb_log = True
50
+
51
+
52
+ WORLD_SIZE=1
53
+ PID of this process = 1190785
54
+ global_pool = True
55
+ gsr = False
56
+ Creating datasets
57
+ Datasets ready
58
+ img_size (144, 320) patch_size (16, 16) frames 16 t_patch_size 2
59
+ model initialized
60
+ latest_checkpoint: epoch99.pth
61
+
62
+ Loaded checkpoint epoch99.pth from /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/checkpoints/HCPflat_large_gsrFalse_
63
+
64
+ Input dimension: 1024
65
+ total_steps 139140
66
+ wandb_config:
67
+ {'model_name': 'HCPflat_large_gsrFalse__HCP_FT_age', 'batch_size': 16, 'weight_decay': 1e-05, 'num_epochs': 20, 'seed': 42, 'lr_scheduler_type': 'cycle', 'save_ckpt': False, 'max_lr': 0.0001, 'target': 'age', 'num_workers': 10}
68
+ wandb_id: HCPflat_large_gsrFalse__beta_age_HCPFT_e7c8af61-0ee0-4235-bcdb-bd61bb32c3b5
541345.err ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [NbConvertApp] Converting notebook HCP_downstream_raw_flatmaps.ipynb to python
2
+ [NbConvertApp] Writing 36559 bytes to HCP_downstream_raw_flatmaps.py
3
+ wandb: Using wandb-core as the SDK backend. Please refer to https://wandb.me/wandb-core for more information.
4
+ wandb: Currently logged in as: ckadirt. Use `wandb login --relogin` to force relogin
5
+ wandb: Tracking run with wandb version 0.18.3
6
+ wandb: Run data is saved locally in /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/wandb/run-20241127_015933-HCPflat_raw_beta_trial_type_3d482888-f4eb-482f-a3c2-2056642d97e2
7
+ wandb: Run `wandb offline` to turn off syncing.
8
+ wandb: Syncing run HCPflat_raw_beta_trial_type
9
+ wandb: ⭐️ View project at https://stability.wandb.io/ckadirt/fMRI-foundation-model
10
+ wandb: 🚀 View run at https://stability.wandb.io/ckadirt/fMRI-foundation-model/runs/HCPflat_raw_beta_trial_type_3d482888-f4eb-482f-a3c2-2056642d97e2
11
+
12
+ Traceback (most recent call last):
13
+ File "/weka/proj-fmri/ckadirt/fMRI-foundation-model/src/HCP_downstream_raw_flatmaps.py", line 829, in <module>
14
+ loss = criterion(outputs, labels)
15
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^
16
+ File "/admin/home-ckadirt/foundation_env/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
17
+ return self._call_impl(*args, **kwargs)
18
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19
+ File "/admin/home-ckadirt/foundation_env/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
20
+ return forward_call(*args, **kwargs)
21
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22
+ File "/admin/home-ckadirt/foundation_env/lib/python3.11/site-packages/torch/nn/modules/loss.py", line 1188, in forward
23
+ return F.cross_entropy(input, target, weight=self.weight,
24
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
25
+ File "/admin/home-ckadirt/foundation_env/lib/python3.11/site-packages/torch/nn/functional.py", line 3104, in cross_entropy
26
+ return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing)
27
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
28
+ RuntimeError: 0D or 1D target tensor expected, multi-target not supported
541345.out ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-135-126
3
+ MASTER_PORT=13292
4
+ WORLD_SIZE=1
5
+ PID of this process = 2152625
6
+ ------ ARGS -------
7
+ Namespace(model_suffix='beta', hcp_flat_path='/weka/proj-medarc/shared/HCP-Flat', batch_size=256, wandb_log=True, num_epochs=50, lr_scheduler_type='cycle', save_ckpt=False, seed=42, max_lr=1e-05, target='trial_type', num_workers=15, weight_decay=1e-05)
8
+ Number of classes: 21
9
+ Input dimension: 737280
10
+ total_steps 21750
11
+ wandb_config:
12
+ {'model_name': 'HCPflat_raw_trial_type', 'batch_size': 256, 'weight_decay': 1e-05, 'num_epochs': 50, 'seed': 42, 'lr_scheduler_type': 'cycle', 'save_ckpt': False, 'max_lr': 1e-05, 'target': 'trial_type', 'num_workers': 15}
13
+ wandb_id: HCPflat_raw_beta_trial_type_3d482888-f4eb-482f-a3c2-2056642d97e2
14
+ wandb: 🚀 View run HCPflat_raw_beta_trial_type at: https://stability.wandb.io/ckadirt/fMRI-foundation-model/runs/HCPflat_raw_beta_trial_type_3d482888-f4eb-482f-a3c2-2056642d97e2
15
+ wandb: Find logs at: wandb/run-20241127_015933-HCPflat_raw_beta_trial_type_3d482888-f4eb-482f-a3c2-2056642d97e2/logs
541349.err ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [NbConvertApp] Converting notebook HCP_downstream_raw_flatmaps.ipynb to python
2
+ [NbConvertApp] Writing 36673 bytes to HCP_downstream_raw_flatmaps.py
3
+ wandb: Using wandb-core as the SDK backend. Please refer to https://wandb.me/wandb-core for more information.
4
+ wandb: Currently logged in as: ckadirt. Use `wandb login --relogin` to force relogin
5
+ wandb: Tracking run with wandb version 0.18.3
6
+ wandb: Run data is saved locally in /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/wandb/run-20241127_020911-HCPflat_raw_beta_trial_type_81853367-3038-4b91-805f-5066c048cef4
7
+ wandb: Run `wandb offline` to turn off syncing.
8
+ wandb: Syncing run HCPflat_raw_beta_trial_type
9
+ wandb: ⭐️ View project at https://stability.wandb.io/ckadirt/fMRI-foundation-model
10
+ wandb: 🚀 View run at https://stability.wandb.io/ckadirt/fMRI-foundation-model/runs/HCPflat_raw_beta_trial_type_81853367-3038-4b91-805f-5066c048cef4
11
+
12
+
13
+
14
+
15
+
16
+ slurmstepd: error: *** JOB 541349 ON ip-10-0-135-126 CANCELLED AT 2024-11-27T02:28:13 ***
17
+ slurmstepd: error: *** REASON: burst_buffer/lua: Stage-out in progress ***
18
+
541349.out ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-135-126
3
+ MASTER_PORT=17074
4
+ WORLD_SIZE=1
5
+ PID of this process = 2161551
6
+ ------ ARGS -------
7
+ Namespace(model_suffix='beta', hcp_flat_path='/weka/proj-medarc/shared/HCP-Flat', batch_size=256, wandb_log=True, num_epochs=50, lr_scheduler_type='cycle', save_ckpt=False, seed=42, max_lr=1e-05, target='trial_type', num_workers=15, weight_decay=1e-05)
8
+ Number of classes: 21
9
+ Input dimension: 737280
10
+ total_steps 21750
11
+ wandb_config:
12
+ {'model_name': 'HCPflat_raw_trial_type', 'batch_size': 256, 'weight_decay': 1e-05, 'num_epochs': 50, 'seed': 42, 'lr_scheduler_type': 'cycle', 'save_ckpt': False, 'max_lr': 1e-05, 'target': 'trial_type', 'num_workers': 15}
13
+ wandb_id: HCPflat_raw_beta_trial_type_81853367-3038-4b91-805f-5066c048cef4
14
+ Step [100/435] - Training Loss: 2.2615 - Training Accuracy: 1472.12%
15
+ Step [200/435] - Training Loss: 1.4896 - Training Accuracy: 1663.83%
16
+ Step [300/435] - Training Loss: 0.8745 - Training Accuracy: 1726.14%
17
+ Step [400/435] - Training Loss: 0.5028 - Training Accuracy: 1742.26%
18
+ Epoch [1/50] - Training Loss: 1.5308, Training Accuracy: 1743.88% - Validation Loss: 0.5084, Validation Accuracy: 1955.07%
19
+ Step [100/435] - Training Loss: 0.2828 - Training Accuracy: 1781.62%
20
+ Step [200/435] - Training Loss: 0.3001 - Training Accuracy: 1787.59%
21
+ Step [300/435] - Training Loss: 0.2278 - Training Accuracy: 1771.23%
22
+ Step [400/435] - Training Loss: 0.2211 - Training Accuracy: 1768.90%
23
+ Epoch [2/50] - Training Loss: 0.2600, Training Accuracy: 1767.59% - Validation Loss: 0.2073, Validation Accuracy: 1961.79%
541350.err ADDED
The diff for this file is too large to render. See raw diff
 
541350.out ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-135-126
3
+ MASTER_PORT=18935
4
+ WORLD_SIZE=1
5
+ PID of this process = 2164521
6
+ ------ ARGS -------
7
+ Namespace(model_suffix='beta', hcp_flat_path='/weka/proj-medarc/shared/HCP-Flat', batch_size=256, wandb_log=True, num_epochs=50, lr_scheduler_type='cycle', save_ckpt=False, seed=42, max_lr=1e-05, target='age', num_workers=15, weight_decay=1e-05)
8
+ Input dimension: 737280
9
+ total_steps 21750
10
+ wandb_config:
11
+ {'model_name': 'HCPflat_raw_age', 'batch_size': 256, 'weight_decay': 1e-05, 'num_epochs': 50, 'seed': 42, 'lr_scheduler_type': 'cycle', 'save_ckpt': False, 'max_lr': 1e-05, 'target': 'age', 'num_workers': 15}
12
+ wandb_id: HCPflat_raw_beta_age_31e54b73-122f-4c96-8d20-21ee38d0705b
13
+ Step [100/435] - Training Loss: 0.6079 - Training MSE: 0.5940
14
+ Step [200/435] - Training Loss: 0.5179 - Training MSE: 0.5895
15
+ Step [300/435] - Training Loss: 0.5806 - Training MSE: 0.5846
16
+ Step [400/435] - Training Loss: 0.4953 - Training MSE: 0.5817
17
+ Epoch [1/50] - Training Loss: 0.5784, Training MSE: 0.5813 - Validation Loss: 0.5355, Validation MSE: 0.5417
18
+ Step [100/435] - Training Loss: 0.4042 - Training MSE: 0.5476
19
+ Step [200/435] - Training Loss: 0.5508 - Training MSE: 0.5488
20
+ Step [300/435] - Training Loss: 0.4799 - Training MSE: 0.5478
21
+ Step [400/435] - Training Loss: 0.5536 - Training MSE: 0.5496
22
+ Epoch [2/50] - Training Loss: 0.4875, Training MSE: 0.5496 - Validation Loss: 0.5427, Validation MSE: 0.5495
23
+ Step [100/435] - Training Loss: 0.3078 - Training MSE: 0.5391
24
+ Step [200/435] - Training Loss: 0.3315 - Training MSE: 0.5413
25
+ Step [300/435] - Training Loss: 0.3964 - Training MSE: 0.5442
26
+ Step [400/435] - Training Loss: 0.3456 - Training MSE: 0.5453
27
+ Epoch [3/50] - Training Loss: 0.3329, Training MSE: 0.5454 - Validation Loss: 0.5490, Validation MSE: 0.5614
28
+ Step [100/435] - Training Loss: 0.2159 - Training MSE: 0.5618
29
+ Step [200/435] - Training Loss: 0.2387 - Training MSE: 0.5638
30
+ Step [300/435] - Training Loss: 0.2004 - Training MSE: 0.5652
31
+ Step [400/435] - Training Loss: 0.2158 - Training MSE: 0.5671
32
+ Epoch [4/50] - Training Loss: 0.2364, Training MSE: 0.5674 - Validation Loss: 0.5676, Validation MSE: 0.5808
33
+ Step [100/435] - Training Loss: 0.1533 - Training MSE: 0.5899
34
+ Step [200/435] - Training Loss: 0.1590 - Training MSE: 0.5937
35
+ Step [300/435] - Training Loss: 0.1987 - Training MSE: 0.5943
36
+ Step [400/435] - Training Loss: 0.2009 - Training MSE: 0.5958
37
+ Epoch [5/50] - Training Loss: 0.1795, Training MSE: 0.5955 - Validation Loss: 0.6034, Validation MSE: 0.6168
38
+ Step [100/435] - Training Loss: 0.1450 - Training MSE: 0.6214
39
+ Step [200/435] - Training Loss: 0.1467 - Training MSE: 0.6192
40
+ Step [300/435] - Training Loss: 0.1742 - Training MSE: 0.6189
41
+ Step [400/435] - Training Loss: 0.1820 - Training MSE: 0.6200
42
+ Epoch [6/50] - Training Loss: 0.1412, Training MSE: 0.6204 - Validation Loss: 0.6164, Validation MSE: 0.6309
43
+ Step [100/435] - Training Loss: 0.0961 - Training MSE: 0.6445
44
+ Step [200/435] - Training Loss: 0.1143 - Training MSE: 0.6474
45
+ Step [300/435] - Training Loss: 0.1104 - Training MSE: 0.6465
46
+ Step [400/435] - Training Loss: 0.1170 - Training MSE: 0.6448
47
+ Epoch [7/50] - Training Loss: 0.1132, Training MSE: 0.6442 - Validation Loss: 0.6420, Validation MSE: 0.6572
48
+ Step [100/435] - Training Loss: 0.0859 - Training MSE: 0.6744
49
+ Step [200/435] - Training Loss: 0.0967 - Training MSE: 0.6682
50
+ Step [300/435] - Training Loss: 0.0962 - Training MSE: 0.6668
51
+ Step [400/435] - Training Loss: 0.1131 - Training MSE: 0.6671
52
+ Epoch [8/50] - Training Loss: 0.0912, Training MSE: 0.6655 - Validation Loss: 0.6658, Validation MSE: 0.6790
53
+ Step [100/435] - Training Loss: 0.0650 - Training MSE: 0.6852
54
+ Step [200/435] - Training Loss: 0.0806 - Training MSE: 0.6835
55
+ Step [300/435] - Training Loss: 0.0789 - Training MSE: 0.6826
56
+ Step [400/435] - Training Loss: 0.0915 - Training MSE: 0.6824
57
+ Epoch [9/50] - Training Loss: 0.0739, Training MSE: 0.6820 - Validation Loss: 0.6844, Validation MSE: 0.7001
58
+ Step [100/435] - Training Loss: 0.0604 - Training MSE: 0.6952
59
+ Step [200/435] - Training Loss: 0.0608 - Training MSE: 0.6973
60
+ Step [300/435] - Training Loss: 0.0601 - Training MSE: 0.6990
61
+ Step [400/435] - Training Loss: 0.0888 - Training MSE: 0.6998
62
+ Epoch [10/50] - Training Loss: 0.0602, Training MSE: 0.6998 - Validation Loss: 0.7134, Validation MSE: 0.7278
63
+ Step [100/435] - Training Loss: 0.0403 - Training MSE: 0.7351
64
+ Step [200/435] - Training Loss: 0.0519 - Training MSE: 0.7232
65
+ Step [300/435] - Training Loss: 0.0490 - Training MSE: 0.7203
66
+ Step [400/435] - Training Loss: 0.0611 - Training MSE: 0.7156
67
+ Epoch [11/50] - Training Loss: 0.0492, Training MSE: 0.7141 - Validation Loss: 0.7246, Validation MSE: 0.7388
68
+ Step [100/435] - Training Loss: 0.0310 - Training MSE: 0.7381
69
+ Step [200/435] - Training Loss: 0.0368 - Training MSE: 0.7302
70
+ Step [300/435] - Training Loss: 0.0446 - Training MSE: 0.7282
71
+ Step [400/435] - Training Loss: 0.0474 - Training MSE: 0.7276
72
+ Epoch [12/50] - Training Loss: 0.0400, Training MSE: 0.7267 - Validation Loss: 0.7409, Validation MSE: 0.7569
73
+ Step [100/435] - Training Loss: 0.0315 - Training MSE: 0.7505
74
+ Step [200/435] - Training Loss: 0.0310 - Training MSE: 0.7421
75
+ Step [300/435] - Training Loss: 0.0356 - Training MSE: 0.7409
76
+ Step [400/435] - Training Loss: 0.0428 - Training MSE: 0.7382
77
+ Epoch [13/50] - Training Loss: 0.0324, Training MSE: 0.7377 - Validation Loss: 0.7593, Validation MSE: 0.7739
78
+ Step [100/435] - Training Loss: 0.0229 - Training MSE: 0.7523
79
+ Step [200/435] - Training Loss: 0.0279 - Training MSE: 0.7534
80
+ Step [300/435] - Training Loss: 0.0317 - Training MSE: 0.7516
81
+ Step [400/435] - Training Loss: 0.0314 - Training MSE: 0.7493
82
+ Epoch [14/50] - Training Loss: 0.0268, Training MSE: 0.7477 - Validation Loss: 0.7724, Validation MSE: 0.7878
83
+ Step [100/435] - Training Loss: 0.0163 - Training MSE: 0.7665
84
+ Step [200/435] - Training Loss: 0.0220 - Training MSE: 0.7628
85
+ Step [300/435] - Training Loss: 0.0242 - Training MSE: 0.7608
86
+ Step [400/435] - Training Loss: 0.0288 - Training MSE: 0.7579
87
+ Epoch [15/50] - Training Loss: 0.0215, Training MSE: 0.7572 - Validation Loss: 0.7895, Validation MSE: 0.8040
88
+ Step [100/435] - Training Loss: 0.0134 - Training MSE: 0.7748
89
+ Step [200/435] - Training Loss: 0.0160 - Training MSE: 0.7727
90
+ Step [300/435] - Training Loss: 0.0197 - Training MSE: 0.7660
91
+ Step [400/435] - Training Loss: 0.0230 - Training MSE: 0.7650
92
+ Epoch [16/50] - Training Loss: 0.0180, Training MSE: 0.7649 - Validation Loss: 0.8056, Validation MSE: 0.8198
93
+ Step [100/435] - Training Loss: 0.0127 - Training MSE: 0.7814
94
+ Step [200/435] - Training Loss: 0.0157 - Training MSE: 0.7747
95
+ Step [300/435] - Training Loss: 0.0165 - Training MSE: 0.7720
96
+ Step [400/435] - Training Loss: 0.0159 - Training MSE: 0.7728
97
+ Epoch [17/50] - Training Loss: 0.0145, Training MSE: 0.7717 - Validation Loss: 0.8114, Validation MSE: 0.8293
98
+ Step [100/435] - Training Loss: 0.0095 - Training MSE: 0.7832
99
+ Step [200/435] - Training Loss: 0.0129 - Training MSE: 0.7875
100
+ Step [300/435] - Training Loss: 0.0104 - Training MSE: 0.7807
101
+ Step [400/435] - Training Loss: 0.0119 - Training MSE: 0.7786
102
+ Epoch [18/50] - Training Loss: 0.0119, Training MSE: 0.7773 - Validation Loss: 0.8136, Validation MSE: 0.8289
103
+ Step [100/435] - Training Loss: 0.0080 - Training MSE: 0.7895
104
+ Step [200/435] - Training Loss: 0.0097 - Training MSE: 0.7878
105
+ Step [300/435] - Training Loss: 0.0100 - Training MSE: 0.7860
106
+ Step [400/435] - Training Loss: 0.0121 - Training MSE: 0.7824
107
+ Epoch [19/50] - Training Loss: 0.0100, Training MSE: 0.7826 - Validation Loss: 0.8201, Validation MSE: 0.8367
108
+ Step [100/435] - Training Loss: 0.0101 - Training MSE: 0.7886
109
+ Step [200/435] - Training Loss: 0.0097 - Training MSE: 0.7900
110
+ Step [300/435] - Training Loss: 0.0096 - Training MSE: 0.7883
111
+ Step [400/435] - Training Loss: 0.0120 - Training MSE: 0.7878
112
+ Epoch [20/50] - Training Loss: 0.0084, Training MSE: 0.7878 - Validation Loss: 0.8246, Validation MSE: 0.8405
113
+ Step [100/435] - Training Loss: 0.0061 - Training MSE: 0.7964
114
+ Step [200/435] - Training Loss: 0.0061 - Training MSE: 0.7913
115
+ Step [300/435] - Training Loss: 0.0081 - Training MSE: 0.7896
116
+ Step [400/435] - Training Loss: 0.0067 - Training MSE: 0.7924
117
+ Epoch [21/50] - Training Loss: 0.0071, Training MSE: 0.7912 - Validation Loss: 0.8344, Validation MSE: 0.8493
118
+ Step [100/435] - Training Loss: 0.0067 - Training MSE: 0.8002
119
+ Step [200/435] - Training Loss: 0.0071 - Training MSE: 0.8009
120
+ Step [300/435] - Training Loss: 0.0070 - Training MSE: 0.7963
121
+ Step [400/435] - Training Loss: 0.0053 - Training MSE: 0.7946
122
+ Epoch [22/50] - Training Loss: 0.0060, Training MSE: 0.7941 - Validation Loss: 0.8400, Validation MSE: 0.8555
123
+ Step [100/435] - Training Loss: 0.0046 - Training MSE: 0.7930
124
+ Step [200/435] - Training Loss: 0.0054 - Training MSE: 0.7987
125
+ Step [300/435] - Training Loss: 0.0048 - Training MSE: 0.7986
126
+ Step [400/435] - Training Loss: 0.0058 - Training MSE: 0.7976
127
+ Epoch [23/50] - Training Loss: 0.0051, Training MSE: 0.7968 - Validation Loss: 0.8398, Validation MSE: 0.8552
128
+ Step [100/435] - Training Loss: 0.0046 - Training MSE: 0.8091
129
+ Step [200/435] - Training Loss: 0.0044 - Training MSE: 0.8047
130
+ Step [300/435] - Training Loss: 0.0041 - Training MSE: 0.7978
131
+ Step [400/435] - Training Loss: 0.0041 - Training MSE: 0.7975
132
+ Epoch [24/50] - Training Loss: 0.0046, Training MSE: 0.7982 - Validation Loss: 0.8454, Validation MSE: 0.8614
133
+ Step [100/435] - Training Loss: 0.0043 - Training MSE: 0.8051
134
+ Step [200/435] - Training Loss: 0.0041 - Training MSE: 0.8029
135
+ Step [300/435] - Training Loss: 0.0036 - Training MSE: 0.8008
136
+ Step [400/435] - Training Loss: 0.0034 - Training MSE: 0.8006
137
+ Epoch [25/50] - Training Loss: 0.0040, Training MSE: 0.8000 - Validation Loss: 0.8471, Validation MSE: 0.8635
138
+ Step [100/435] - Training Loss: 0.0035 - Training MSE: 0.7997
139
+ Step [200/435] - Training Loss: 0.0028 - Training MSE: 0.8036
140
+ Step [300/435] - Training Loss: 0.0036 - Training MSE: 0.8002
141
+ Step [400/435] - Training Loss: 0.0042 - Training MSE: 0.8029
142
+ Epoch [26/50] - Training Loss: 0.0037, Training MSE: 0.8015 - Validation Loss: 0.8479, Validation MSE: 0.8643
143
+ Step [100/435] - Training Loss: 0.0035 - Training MSE: 0.8106
144
+ Step [200/435] - Training Loss: 0.0054 - Training MSE: 0.8063
145
+ Step [300/435] - Training Loss: 0.0046 - Training MSE: 0.8047
146
+ Step [400/435] - Training Loss: 0.0040 - Training MSE: 0.8028
147
+ Epoch [27/50] - Training Loss: 0.0043, Training MSE: 0.8031 - Validation Loss: 0.8483, Validation MSE: 0.8642
148
+ Step [100/435] - Training Loss: 0.0028 - Training MSE: 0.8015
149
+ Step [200/435] - Training Loss: 0.0040 - Training MSE: 0.8030
150
+ Step [300/435] - Training Loss: 0.0036 - Training MSE: 0.8030
151
+ Step [400/435] - Training Loss: 0.0079 - Training MSE: 0.8025
152
+ Epoch [28/50] - Training Loss: 0.0037, Training MSE: 0.8037 - Validation Loss: 0.8482, Validation MSE: 0.8644
153
+ Step [100/435] - Training Loss: 0.0133 - Training MSE: 0.8092
154
+ Step [200/435] - Training Loss: 0.0036 - Training MSE: 0.8067
155
+ Step [300/435] - Training Loss: 0.0033 - Training MSE: 0.8063
156
+ Step [400/435] - Training Loss: 0.0020 - Training MSE: 0.8067
157
+ Epoch [29/50] - Training Loss: 0.0044, Training MSE: 0.8054 - Validation Loss: 0.8503, Validation MSE: 0.8654
158
+ Step [100/435] - Training Loss: 0.0021 - Training MSE: 0.8117
159
+ Step [200/435] - Training Loss: 0.0121 - Training MSE: 0.8105
160
+ Step [300/435] - Training Loss: 0.0028 - Training MSE: 0.8060
161
+ Step [400/435] - Training Loss: 0.0025 - Training MSE: 0.8052
162
+ Epoch [30/50] - Training Loss: 0.0038, Training MSE: 0.8053 - Validation Loss: 0.8541, Validation MSE: 0.8688
163
+ Step [100/435] - Training Loss: 0.0014 - Training MSE: 0.7938
164
+ Step [200/435] - Training Loss: 0.0031 - Training MSE: 0.8074
165
+ Step [300/435] - Training Loss: 0.0015 - Training MSE: 0.8058
166
+ Step [400/435] - Training Loss: 0.0017 - Training MSE: 0.8041
167
+ Epoch [31/50] - Training Loss: 0.0025, Training MSE: 0.8045 - Validation Loss: 0.8527, Validation MSE: 0.8680
168
+ Step [100/435] - Training Loss: 0.0031 - Training MSE: 0.8159
169
+ Step [200/435] - Training Loss: 0.0014 - Training MSE: 0.8139
170
+ Step [300/435] - Training Loss: 0.0012 - Training MSE: 0.8103
171
+ Step [400/435] - Training Loss: 0.0011 - Training MSE: 0.8056
172
+ Epoch [32/50] - Training Loss: 0.0019, Training MSE: 0.8038 - Validation Loss: 0.8513, Validation MSE: 0.8665
173
+ Step [100/435] - Training Loss: 0.0102 - Training MSE: 0.8013
174
+ Step [200/435] - Training Loss: 0.0009 - Training MSE: 0.8001
175
+ Step [300/435] - Training Loss: 0.0006 - Training MSE: 0.8021
176
+ Step [400/435] - Training Loss: 0.0008 - Training MSE: 0.8021
177
+ Epoch [33/50] - Training Loss: 0.0008, Training MSE: 0.8031 - Validation Loss: 0.8515, Validation MSE: 0.8670
178
+ Step [100/435] - Training Loss: 0.0004 - Training MSE: 0.7997
179
+ Step [200/435] - Training Loss: 0.0004 - Training MSE: 0.8031
180
+ Step [300/435] - Training Loss: 0.0004 - Training MSE: 0.8047
181
+ Step [400/435] - Training Loss: 0.0005 - Training MSE: 0.8031
182
+ Epoch [34/50] - Training Loss: 0.0004, Training MSE: 0.8029 - Validation Loss: 0.8521, Validation MSE: 0.8676
183
+ Step [100/435] - Training Loss: 0.0002 - Training MSE: 0.7941
184
+ Step [200/435] - Training Loss: 0.0005 - Training MSE: 0.7996
185
+ Step [300/435] - Training Loss: 0.0003 - Training MSE: 0.8016
186
+ Step [400/435] - Training Loss: 0.0003 - Training MSE: 0.8022
187
+ Epoch [35/50] - Training Loss: 0.0003, Training MSE: 0.8028 - Validation Loss: 0.8521, Validation MSE: 0.8676
188
+ Step [100/435] - Training Loss: 0.0006 - Training MSE: 0.8030
189
+ Step [200/435] - Training Loss: 0.0002 - Training MSE: 0.8033
190
+ Step [300/435] - Training Loss: 0.0002 - Training MSE: 0.8046
191
+ Step [400/435] - Training Loss: 0.0002 - Training MSE: 0.8030
192
+ Epoch [36/50] - Training Loss: 0.0002, Training MSE: 0.8028 - Validation Loss: 0.8526, Validation MSE: 0.8683
193
+ Step [100/435] - Training Loss: 0.0001 - Training MSE: 0.8003
194
+ Step [200/435] - Training Loss: 0.0002 - Training MSE: 0.8045
195
+ Step [300/435] - Training Loss: 0.0002 - Training MSE: 0.8042
196
+ Step [400/435] - Training Loss: 0.0002 - Training MSE: 0.8047
197
+ Epoch [37/50] - Training Loss: 0.0002, Training MSE: 0.8033 - Validation Loss: 0.8518, Validation MSE: 0.8675
198
+ Step [100/435] - Training Loss: 0.0001 - Training MSE: 0.8073
199
+ Step [200/435] - Training Loss: 0.0002 - Training MSE: 0.8066
200
+ Step [300/435] - Training Loss: 0.0001 - Training MSE: 0.8049
201
+ Step [400/435] - Training Loss: 0.0001 - Training MSE: 0.8029
202
+ Epoch [38/50] - Training Loss: 0.0002, Training MSE: 0.8030 - Validation Loss: 0.8526, Validation MSE: 0.8680
203
+ Step [100/435] - Training Loss: 0.0001 - Training MSE: 0.8039
204
+ Step [200/435] - Training Loss: 0.0002 - Training MSE: 0.7996
205
+ Step [300/435] - Training Loss: 0.0001 - Training MSE: 0.8031
206
+ Step [400/435] - Training Loss: 0.0001 - Training MSE: 0.8036
207
+ Epoch [39/50] - Training Loss: 0.0001, Training MSE: 0.8035 - Validation Loss: 0.8525, Validation MSE: 0.8681
208
+ Step [100/435] - Training Loss: 0.0001 - Training MSE: 0.8010
209
+ Step [200/435] - Training Loss: 0.0001 - Training MSE: 0.8027
210
+ Step [300/435] - Training Loss: 0.0002 - Training MSE: 0.8015
211
+ Step [400/435] - Training Loss: 0.0001 - Training MSE: 0.8031
212
+ Epoch [40/50] - Training Loss: 0.0001, Training MSE: 0.8036 - Validation Loss: 0.8533, Validation MSE: 0.8687
213
+ Step [100/435] - Training Loss: 0.0001 - Training MSE: 0.8101
214
+ Step [200/435] - Training Loss: 0.0001 - Training MSE: 0.8026
215
+ Step [300/435] - Training Loss: 0.0001 - Training MSE: 0.8033
216
+ Step [400/435] - Training Loss: 0.0001 - Training MSE: 0.8038
217
+ Epoch [41/50] - Training Loss: 0.0001, Training MSE: 0.8033 - Validation Loss: 0.8533, Validation MSE: 0.8688
218
+ Step [100/435] - Training Loss: 0.0001 - Training MSE: 0.8005
219
+ Step [200/435] - Training Loss: 0.0001 - Training MSE: 0.8006
220
+ Step [300/435] - Training Loss: 0.0000 - Training MSE: 0.8055
221
+ Step [400/435] - Training Loss: 0.0000 - Training MSE: 0.8031
222
+ Epoch [42/50] - Training Loss: 0.0001, Training MSE: 0.8035 - Validation Loss: 0.8533, Validation MSE: 0.8689
223
+ Step [100/435] - Training Loss: 0.0000 - Training MSE: 0.7973
224
+ Step [200/435] - Training Loss: 0.0000 - Training MSE: 0.8005
225
+ Step [300/435] - Training Loss: 0.0000 - Training MSE: 0.8027
226
+ Step [400/435] - Training Loss: 0.0000 - Training MSE: 0.8034
227
+ Epoch [43/50] - Training Loss: 0.0000, Training MSE: 0.8033 - Validation Loss: 0.8532, Validation MSE: 0.8688
228
+ Step [100/435] - Training Loss: 0.0000 - Training MSE: 0.7967
229
+ Step [200/435] - Training Loss: 0.0000 - Training MSE: 0.7960
230
+ Step [300/435] - Training Loss: 0.0000 - Training MSE: 0.7976
231
+ Step [400/435] - Training Loss: 0.0000 - Training MSE: 0.8024
232
+ Epoch [44/50] - Training Loss: 0.0000, Training MSE: 0.8032 - Validation Loss: 0.8533, Validation MSE: 0.8688
233
+ Step [100/435] - Training Loss: 0.0000 - Training MSE: 0.8043
234
+ Step [200/435] - Training Loss: 0.0000 - Training MSE: 0.8054
235
+ Step [300/435] - Training Loss: 0.0000 - Training MSE: 0.8052
236
+ Step [400/435] - Training Loss: 0.0000 - Training MSE: 0.8047
237
+ Epoch [45/50] - Training Loss: 0.0000, Training MSE: 0.8037 - Validation Loss: 0.8533, Validation MSE: 0.8689
238
+ Step [100/435] - Training Loss: 0.0000 - Training MSE: 0.8019
239
+ Step [200/435] - Training Loss: 0.0000 - Training MSE: 0.8023
240
+ Step [300/435] - Training Loss: 0.0000 - Training MSE: 0.8026
241
+ Step [400/435] - Training Loss: 0.0000 - Training MSE: 0.8041
242
+ Epoch [46/50] - Training Loss: 0.0000, Training MSE: 0.8032 - Validation Loss: 0.8533, Validation MSE: 0.8689
243
+ Step [100/435] - Training Loss: 0.0000 - Training MSE: 0.7993
244
+ Step [200/435] - Training Loss: 0.0000 - Training MSE: 0.8029
245
+ Step [300/435] - Training Loss: 0.0000 - Training MSE: 0.8066
246
+ Step [400/435] - Training Loss: 0.0000 - Training MSE: 0.8051
247
+ Epoch [47/50] - Training Loss: 0.0000, Training MSE: 0.8036 - Validation Loss: 0.8533, Validation MSE: 0.8689
248
+ Step [100/435] - Training Loss: 0.0000 - Training MSE: 0.7992
249
+ Step [200/435] - Training Loss: 0.0000 - Training MSE: 0.8020
250
+ Step [300/435] - Training Loss: 0.0000 - Training MSE: 0.8030
251
+ Step [400/435] - Training Loss: 0.0000 - Training MSE: 0.8036
252
+ Epoch [48/50] - Training Loss: 0.0000, Training MSE: 0.8032 - Validation Loss: 0.8533, Validation MSE: 0.8689
253
+ Step [100/435] - Training Loss: 0.0000 - Training MSE: 0.7972
254
+ Step [200/435] - Training Loss: 0.0000 - Training MSE: 0.7993
255
+ Step [300/435] - Training Loss: 0.0000 - Training MSE: 0.8023
256
+ Step [400/435] - Training Loss: 0.0000 - Training MSE: 0.8016
257
+ Epoch [49/50] - Training Loss: 0.0000, Training MSE: 0.8035 - Validation Loss: 0.8533, Validation MSE: 0.8689
258
+ Step [100/435] - Training Loss: 0.0000 - Training MSE: 0.8021
259
+ Step [200/435] - Training Loss: 0.0000 - Training MSE: 0.8040
260
+ Step [300/435] - Training Loss: 0.0000 - Training MSE: 0.8023
261
+ Step [400/435] - Training Loss: 0.0000 - Training MSE: 0.8036
262
+ Epoch [50/50] - Training Loss: 0.0000, Training MSE: 0.8037 - Validation Loss: 0.8533, Validation MSE: 0.8689
263
+ wandb: 🚀 View run HCPflat_raw_beta_age at: https://stability.wandb.io/ckadirt/fMRI-foundation-model/runs/HCPflat_raw_beta_age_31e54b73-122f-4c96-8d20-21ee38d0705b
264
+ wandb: Find logs at: wandb/run-20241127_021238-HCPflat_raw_beta_age_31e54b73-122f-4c96-8d20-21ee38d0705b/logs
541355.err ADDED
The diff for this file is too large to render. See raw diff
 
541355.out ADDED
@@ -0,0 +1,265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-131-135
3
+ MASTER_PORT=13958
4
+ WORLD_SIZE=1
5
+ PID of this process = 1419057
6
+ ------ ARGS -------
7
+ Namespace(model_suffix='beta', hcp_flat_path='/weka/proj-medarc/shared/HCP-Flat', batch_size=256, wandb_log=True, num_epochs=50, lr_scheduler_type='cycle', save_ckpt=False, seed=42, max_lr=1e-05, target='trial_type', num_workers=15, weight_decay=1e-05)
8
+ Number of classes: 21
9
+ Input dimension: 737280
10
+ total_steps 21750
11
+ wandb_config:
12
+ {'model_name': 'HCPflat_raw_trial_type', 'batch_size': 256, 'weight_decay': 1e-05, 'num_epochs': 50, 'seed': 42, 'lr_scheduler_type': 'cycle', 'save_ckpt': False, 'max_lr': 1e-05, 'target': 'trial_type', 'num_workers': 15}
13
+ wandb_id: HCPflat_raw_beta_trial_type_749d6203-1266-473a-b49a-e7325917f171
14
+ Step [100/435] - Training Loss: 2.2615 - Training Accuracy: 21.61%
15
+ Step [200/435] - Training Loss: 1.4896 - Training Accuracy: 38.51%
16
+ Step [300/435] - Training Loss: 0.8745 - Training Accuracy: 50.88%
17
+ Step [400/435] - Training Loss: 0.5028 - Training Accuracy: 59.75%
18
+ Epoch [1/50] - Training Loss: 1.5308, Training Accuracy: 62.16% - Validation Loss: 0.5084, Validation Accuracy: 90.71%
19
+ Step [100/435] - Training Loss: 0.2828 - Training Accuracy: 94.09%
20
+ Step [200/435] - Training Loss: 0.3001 - Training Accuracy: 94.64%
21
+ Step [300/435] - Training Loss: 0.2278 - Training Accuracy: 95.04%
22
+ Step [400/435] - Training Loss: 0.2211 - Training Accuracy: 95.40%
23
+ Epoch [2/50] - Training Loss: 0.2600, Training Accuracy: 95.54% - Validation Loss: 0.2073, Validation Accuracy: 95.64%
24
+ Step [100/435] - Training Loss: 0.0558 - Training Accuracy: 99.27%
25
+ Step [200/435] - Training Loss: 0.0562 - Training Accuracy: 99.29%
26
+ Step [300/435] - Training Loss: 0.0575 - Training Accuracy: 99.27%
27
+ Step [400/435] - Training Loss: 0.0635 - Training Accuracy: 99.29%
28
+ Epoch [3/50] - Training Loss: 0.0729, Training Accuracy: 99.28% - Validation Loss: 0.1615, Validation Accuracy: 96.23%
29
+ Step [100/435] - Training Loss: 0.0202 - Training Accuracy: 99.91%
30
+ Step [200/435] - Training Loss: 0.0259 - Training Accuracy: 99.91%
31
+ Step [300/435] - Training Loss: 0.0311 - Training Accuracy: 99.91%
32
+ Step [400/435] - Training Loss: 0.0316 - Training Accuracy: 99.91%
33
+ Epoch [4/50] - Training Loss: 0.0291, Training Accuracy: 99.91% - Validation Loss: 0.1442, Validation Accuracy: 96.42%
34
+ Step [100/435] - Training Loss: 0.0156 - Training Accuracy: 99.98%
35
+ Step [200/435] - Training Loss: 0.0134 - Training Accuracy: 99.98%
36
+ Step [300/435] - Training Loss: 0.0142 - Training Accuracy: 99.98%
37
+ Step [400/435] - Training Loss: 0.0202 - Training Accuracy: 99.98%
38
+ Epoch [5/50] - Training Loss: 0.0157, Training Accuracy: 99.98% - Validation Loss: 0.1360, Validation Accuracy: 96.47%
39
+ Step [100/435] - Training Loss: 0.0093 - Training Accuracy: 100.00%
40
+ Step [200/435] - Training Loss: 0.0101 - Training Accuracy: 100.00%
41
+ Step [300/435] - Training Loss: 0.0113 - Training Accuracy: 99.99%
42
+ Step [400/435] - Training Loss: 0.0102 - Training Accuracy: 99.99%
43
+ Epoch [6/50] - Training Loss: 0.0099, Training Accuracy: 99.99% - Validation Loss: 0.1300, Validation Accuracy: 96.64%
44
+ Step [100/435] - Training Loss: 0.0074 - Training Accuracy: 100.00%
45
+ Step [200/435] - Training Loss: 0.0065 - Training Accuracy: 100.00%
46
+ Step [300/435] - Training Loss: 0.0066 - Training Accuracy: 100.00%
47
+ Step [400/435] - Training Loss: 0.0058 - Training Accuracy: 100.00%
48
+ Epoch [7/50] - Training Loss: 0.0067, Training Accuracy: 100.00% - Validation Loss: 0.1265, Validation Accuracy: 96.62%
49
+ Step [100/435] - Training Loss: 0.0050 - Training Accuracy: 100.00%
50
+ Step [200/435] - Training Loss: 0.0063 - Training Accuracy: 100.00%
51
+ Step [300/435] - Training Loss: 0.0040 - Training Accuracy: 100.00%
52
+ Step [400/435] - Training Loss: 0.0055 - Training Accuracy: 100.00%
53
+ Epoch [8/50] - Training Loss: 0.0049, Training Accuracy: 100.00% - Validation Loss: 0.1237, Validation Accuracy: 96.67%
54
+ Step [100/435] - Training Loss: 0.0040 - Training Accuracy: 100.00%
55
+ Step [200/435] - Training Loss: 0.0036 - Training Accuracy: 100.00%
56
+ Step [300/435] - Training Loss: 0.0033 - Training Accuracy: 100.00%
57
+ Step [400/435] - Training Loss: 0.0027 - Training Accuracy: 100.00%
58
+ Epoch [9/50] - Training Loss: 0.0037, Training Accuracy: 100.00% - Validation Loss: 0.1222, Validation Accuracy: 96.64%
59
+ Step [100/435] - Training Loss: 0.0030 - Training Accuracy: 100.00%
60
+ Step [200/435] - Training Loss: 0.0029 - Training Accuracy: 100.00%
61
+ Step [300/435] - Training Loss: 0.0030 - Training Accuracy: 100.00%
62
+ Step [400/435] - Training Loss: 0.0022 - Training Accuracy: 100.00%
63
+ Epoch [10/50] - Training Loss: 0.0028, Training Accuracy: 100.00% - Validation Loss: 0.1203, Validation Accuracy: 96.71%
64
+ Step [100/435] - Training Loss: 0.0024 - Training Accuracy: 100.00%
65
+ Step [200/435] - Training Loss: 0.0020 - Training Accuracy: 100.00%
66
+ Step [300/435] - Training Loss: 0.0019 - Training Accuracy: 100.00%
67
+ Step [400/435] - Training Loss: 0.0023 - Training Accuracy: 100.00%
68
+ Epoch [11/50] - Training Loss: 0.0022, Training Accuracy: 100.00% - Validation Loss: 0.1192, Validation Accuracy: 96.71%
69
+ Step [100/435] - Training Loss: 0.0019 - Training Accuracy: 100.00%
70
+ Step [200/435] - Training Loss: 0.0015 - Training Accuracy: 100.00%
71
+ Step [300/435] - Training Loss: 0.0016 - Training Accuracy: 100.00%
72
+ Step [400/435] - Training Loss: 0.0018 - Training Accuracy: 100.00%
73
+ Epoch [12/50] - Training Loss: 0.0017, Training Accuracy: 100.00% - Validation Loss: 0.1184, Validation Accuracy: 96.78%
74
+ Step [100/435] - Training Loss: 0.0014 - Training Accuracy: 100.00%
75
+ Step [200/435] - Training Loss: 0.0013 - Training Accuracy: 100.00%
76
+ Step [300/435] - Training Loss: 0.0014 - Training Accuracy: 100.00%
77
+ Step [400/435] - Training Loss: 0.0013 - Training Accuracy: 100.00%
78
+ Epoch [13/50] - Training Loss: 0.0014, Training Accuracy: 100.00% - Validation Loss: 0.1174, Validation Accuracy: 96.76%
79
+ Step [100/435] - Training Loss: 0.0011 - Training Accuracy: 100.00%
80
+ Step [200/435] - Training Loss: 0.0011 - Training Accuracy: 100.00%
81
+ Step [300/435] - Training Loss: 0.0012 - Training Accuracy: 100.00%
82
+ Step [400/435] - Training Loss: 0.0012 - Training Accuracy: 100.00%
83
+ Epoch [14/50] - Training Loss: 0.0011, Training Accuracy: 100.00% - Validation Loss: 0.1170, Validation Accuracy: 96.84%
84
+ Step [100/435] - Training Loss: 0.0009 - Training Accuracy: 100.00%
85
+ Step [200/435] - Training Loss: 0.0008 - Training Accuracy: 100.00%
86
+ Step [300/435] - Training Loss: 0.0008 - Training Accuracy: 100.00%
87
+ Step [400/435] - Training Loss: 0.0009 - Training Accuracy: 100.00%
88
+ Epoch [15/50] - Training Loss: 0.0009, Training Accuracy: 100.00% - Validation Loss: 0.1167, Validation Accuracy: 96.81%
89
+ Step [100/435] - Training Loss: 0.0008 - Training Accuracy: 100.00%
90
+ Step [200/435] - Training Loss: 0.0007 - Training Accuracy: 100.00%
91
+ Step [300/435] - Training Loss: 0.0006 - Training Accuracy: 100.00%
92
+ Step [400/435] - Training Loss: 0.0006 - Training Accuracy: 100.00%
93
+ Epoch [16/50] - Training Loss: 0.0007, Training Accuracy: 100.00% - Validation Loss: 0.1167, Validation Accuracy: 96.82%
94
+ Step [100/435] - Training Loss: 0.0006 - Training Accuracy: 100.00%
95
+ Step [200/435] - Training Loss: 0.0006 - Training Accuracy: 100.00%
96
+ Step [300/435] - Training Loss: 0.0007 - Training Accuracy: 100.00%
97
+ Step [400/435] - Training Loss: 0.0006 - Training Accuracy: 100.00%
98
+ Epoch [17/50] - Training Loss: 0.0006, Training Accuracy: 100.00% - Validation Loss: 0.1166, Validation Accuracy: 96.83%
99
+ Step [100/435] - Training Loss: 0.0005 - Training Accuracy: 100.00%
100
+ Step [200/435] - Training Loss: 0.0005 - Training Accuracy: 100.00%
101
+ Step [300/435] - Training Loss: 0.0004 - Training Accuracy: 100.00%
102
+ Step [400/435] - Training Loss: 0.0005 - Training Accuracy: 100.00%
103
+ Epoch [18/50] - Training Loss: 0.0005, Training Accuracy: 100.00% - Validation Loss: 0.1164, Validation Accuracy: 96.82%
104
+ Step [100/435] - Training Loss: 0.0003 - Training Accuracy: 100.00%
105
+ Step [200/435] - Training Loss: 0.0004 - Training Accuracy: 100.00%
106
+ Step [300/435] - Training Loss: 0.0004 - Training Accuracy: 100.00%
107
+ Step [400/435] - Training Loss: 0.0003 - Training Accuracy: 100.00%
108
+ Epoch [19/50] - Training Loss: 0.0004, Training Accuracy: 100.00% - Validation Loss: 0.1162, Validation Accuracy: 96.84%
109
+ Step [100/435] - Training Loss: 0.0003 - Training Accuracy: 100.00%
110
+ Step [200/435] - Training Loss: 0.0003 - Training Accuracy: 100.00%
111
+ Step [300/435] - Training Loss: 0.0003 - Training Accuracy: 100.00%
112
+ Step [400/435] - Training Loss: 0.0003 - Training Accuracy: 100.00%
113
+ Epoch [20/50] - Training Loss: 0.0003, Training Accuracy: 100.00% - Validation Loss: 0.1163, Validation Accuracy: 96.87%
114
+ Step [100/435] - Training Loss: 0.0003 - Training Accuracy: 100.00%
115
+ Step [200/435] - Training Loss: 0.0003 - Training Accuracy: 100.00%
116
+ Step [300/435] - Training Loss: 0.0003 - Training Accuracy: 100.00%
117
+ Step [400/435] - Training Loss: 0.0002 - Training Accuracy: 100.00%
118
+ Epoch [21/50] - Training Loss: 0.0003, Training Accuracy: 100.00% - Validation Loss: 0.1169, Validation Accuracy: 96.87%
119
+ Step [100/435] - Training Loss: 0.0003 - Training Accuracy: 100.00%
120
+ Step [200/435] - Training Loss: 0.0002 - Training Accuracy: 100.00%
121
+ Step [300/435] - Training Loss: 0.0002 - Training Accuracy: 100.00%
122
+ Step [400/435] - Training Loss: 0.0002 - Training Accuracy: 100.00%
123
+ Epoch [22/50] - Training Loss: 0.0002, Training Accuracy: 100.00% - Validation Loss: 0.1164, Validation Accuracy: 96.87%
124
+ Step [100/435] - Training Loss: 0.0002 - Training Accuracy: 100.00%
125
+ Step [200/435] - Training Loss: 0.0002 - Training Accuracy: 100.00%
126
+ Step [300/435] - Training Loss: 0.0002 - Training Accuracy: 100.00%
127
+ Step [400/435] - Training Loss: 0.0002 - Training Accuracy: 100.00%
128
+ Epoch [23/50] - Training Loss: 0.0002, Training Accuracy: 100.00% - Validation Loss: 0.1171, Validation Accuracy: 96.90%
129
+ Step [100/435] - Training Loss: 0.0002 - Training Accuracy: 100.00%
130
+ Step [200/435] - Training Loss: 0.0002 - Training Accuracy: 100.00%
131
+ Step [300/435] - Training Loss: 0.0002 - Training Accuracy: 100.00%
132
+ Step [400/435] - Training Loss: 0.0002 - Training Accuracy: 100.00%
133
+ Epoch [24/50] - Training Loss: 0.0002, Training Accuracy: 100.00% - Validation Loss: 0.1170, Validation Accuracy: 96.92%
134
+ Step [100/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
135
+ Step [200/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
136
+ Step [300/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
137
+ Step [400/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
138
+ Epoch [25/50] - Training Loss: 0.0001, Training Accuracy: 100.00% - Validation Loss: 0.1177, Validation Accuracy: 96.93%
139
+ Step [100/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
140
+ Step [200/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
141
+ Step [300/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
142
+ Step [400/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
143
+ Epoch [26/50] - Training Loss: 0.0001, Training Accuracy: 100.00% - Validation Loss: 0.1178, Validation Accuracy: 96.91%
144
+ Step [100/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
145
+ Step [200/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
146
+ Step [300/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
147
+ Step [400/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
148
+ Epoch [27/50] - Training Loss: 0.0001, Training Accuracy: 100.00% - Validation Loss: 0.1180, Validation Accuracy: 96.93%
149
+ Step [100/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
150
+ Step [200/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
151
+ Step [300/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
152
+ Step [400/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
153
+ Epoch [28/50] - Training Loss: 0.0001, Training Accuracy: 100.00% - Validation Loss: 0.1183, Validation Accuracy: 96.92%
154
+ Step [100/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
155
+ Step [200/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
156
+ Step [300/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
157
+ Step [400/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
158
+ Epoch [29/50] - Training Loss: 0.0001, Training Accuracy: 100.00% - Validation Loss: 0.1192, Validation Accuracy: 96.94%
159
+ Step [100/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
160
+ Step [200/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
161
+ Step [300/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
162
+ Step [400/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
163
+ Epoch [30/50] - Training Loss: 0.0001, Training Accuracy: 100.00% - Validation Loss: 0.1193, Validation Accuracy: 96.95%
164
+ Step [100/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
165
+ Step [200/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
166
+ Step [300/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
167
+ Step [400/435] - Training Loss: 0.0001 - Training Accuracy: 100.00%
168
+ Epoch [31/50] - Training Loss: 0.0000, Training Accuracy: 100.00% - Validation Loss: 0.1198, Validation Accuracy: 96.96%
169
+ Step [100/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
170
+ Step [200/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
171
+ Step [300/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
172
+ Step [400/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
173
+ Epoch [32/50] - Training Loss: 0.0000, Training Accuracy: 100.00% - Validation Loss: 0.1203, Validation Accuracy: 96.94%
174
+ Step [100/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
175
+ Step [200/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
176
+ Step [300/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
177
+ Step [400/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
178
+ Epoch [33/50] - Training Loss: 0.0000, Training Accuracy: 100.00% - Validation Loss: 0.1206, Validation Accuracy: 96.97%
179
+ Step [100/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
180
+ Step [200/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
181
+ Step [300/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
182
+ Step [400/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
183
+ Epoch [34/50] - Training Loss: 0.0000, Training Accuracy: 100.00% - Validation Loss: 0.1208, Validation Accuracy: 96.98%
184
+ Step [100/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
185
+ Step [200/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
186
+ Step [300/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
187
+ Step [400/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
188
+ Epoch [35/50] - Training Loss: 0.0000, Training Accuracy: 100.00% - Validation Loss: 0.1214, Validation Accuracy: 96.99%
189
+ Step [100/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
190
+ Step [200/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
191
+ Step [300/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
192
+ Step [400/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
193
+ Epoch [36/50] - Training Loss: 0.0000, Training Accuracy: 100.00% - Validation Loss: 0.1220, Validation Accuracy: 97.00%
194
+ Step [100/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
195
+ Step [200/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
196
+ Step [300/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
197
+ Step [400/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
198
+ Epoch [37/50] - Training Loss: 0.0000, Training Accuracy: 100.00% - Validation Loss: 0.1224, Validation Accuracy: 96.99%
199
+ Step [100/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
200
+ Step [200/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
201
+ Step [300/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
202
+ Step [400/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
203
+ Epoch [38/50] - Training Loss: 0.0000, Training Accuracy: 100.00% - Validation Loss: 0.1229, Validation Accuracy: 97.00%
204
+ Step [100/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
205
+ Step [200/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
206
+ Step [300/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
207
+ Step [400/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
208
+ Epoch [39/50] - Training Loss: 0.0000, Training Accuracy: 100.00% - Validation Loss: 0.1232, Validation Accuracy: 97.00%
209
+ Step [100/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
210
+ Step [200/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
211
+ Step [300/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
212
+ Step [400/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
213
+ Epoch [40/50] - Training Loss: 0.0000, Training Accuracy: 100.00% - Validation Loss: 0.1235, Validation Accuracy: 97.00%
214
+ Step [100/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
215
+ Step [200/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
216
+ Step [300/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
217
+ Step [400/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
218
+ Epoch [41/50] - Training Loss: 0.0000, Training Accuracy: 100.00% - Validation Loss: 0.1239, Validation Accuracy: 97.01%
219
+ Step [100/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
220
+ Step [200/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
221
+ Step [300/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
222
+ Step [400/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
223
+ Epoch [42/50] - Training Loss: 0.0000, Training Accuracy: 100.00% - Validation Loss: 0.1242, Validation Accuracy: 97.02%
224
+ Step [100/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
225
+ Step [200/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
226
+ Step [300/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
227
+ Step [400/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
228
+ Epoch [43/50] - Training Loss: 0.0000, Training Accuracy: 100.00% - Validation Loss: 0.1244, Validation Accuracy: 97.00%
229
+ Step [100/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
230
+ Step [200/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
231
+ Step [300/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
232
+ Step [400/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
233
+ Epoch [44/50] - Training Loss: 0.0000, Training Accuracy: 100.00% - Validation Loss: 0.1247, Validation Accuracy: 97.02%
234
+ Step [100/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
235
+ Step [200/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
236
+ Step [300/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
237
+ Step [400/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
238
+ Epoch [45/50] - Training Loss: 0.0000, Training Accuracy: 100.00% - Validation Loss: 0.1250, Validation Accuracy: 97.03%
239
+ Step [100/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
240
+ Step [200/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
241
+ Step [300/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
242
+ Step [400/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
243
+ Epoch [46/50] - Training Loss: 0.0000, Training Accuracy: 100.00% - Validation Loss: 0.1252, Validation Accuracy: 97.02%
244
+ Step [100/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
245
+ Step [200/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
246
+ Step [300/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
247
+ Step [400/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
248
+ Epoch [47/50] - Training Loss: 0.0000, Training Accuracy: 100.00% - Validation Loss: 0.1252, Validation Accuracy: 97.04%
249
+ Step [100/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
250
+ Step [200/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
251
+ Step [300/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
252
+ Step [400/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
253
+ Epoch [48/50] - Training Loss: 0.0000, Training Accuracy: 100.00% - Validation Loss: 0.1253, Validation Accuracy: 97.04%
254
+ Step [100/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
255
+ Step [200/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
256
+ Step [300/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
257
+ Step [400/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
258
+ Epoch [49/50] - Training Loss: 0.0000, Training Accuracy: 100.00% - Validation Loss: 0.1253, Validation Accuracy: 97.04%
259
+ Step [100/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
260
+ Step [200/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
261
+ Step [300/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
262
+ Step [400/435] - Training Loss: 0.0000 - Training Accuracy: 100.00%
263
+ Epoch [50/50] - Training Loss: 0.0000, Training Accuracy: 100.00% - Validation Loss: 0.1253, Validation Accuracy: 97.04%
264
+ wandb: 🚀 View run HCPflat_raw_beta_trial_type at: https://stability.wandb.io/ckadirt/fMRI-foundation-model/runs/HCPflat_raw_beta_trial_type_749d6203-1266-473a-b49a-e7325917f171
265
+ wandb: Find logs at: wandb/run-20241127_023019-HCPflat_raw_beta_trial_type_749d6203-1266-473a-b49a-e7325917f171/logs
541357.err ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [NbConvertApp] Converting notebook HCP_downstream_finetune.ipynb to python
2
+ [NbConvertApp] Writing 31964 bytes to HCP_downstream_finetune.py
3
+ /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/HCP_downstream_finetune.py:658: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
4
+ state = torch.load(checkpoint_path)
5
+ wandb: Using wandb-core as the SDK backend. Please refer to https://wandb.me/wandb-core for more information.
6
+ wandb: Currently logged in as: ckadirt. Use `wandb login --relogin` to force relogin
7
+ wandb: Tracking run with wandb version 0.18.3
8
+ wandb: Run data is saved locally in /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/wandb/run-20241127_023444-HCPflat_large_gsrFalse__beta_age_HCPFT_768d7c19-0891-45ae-8cff-9b10e484c8fe
9
+ wandb: Run `wandb offline` to turn off syncing.
10
+ wandb: Syncing run HCPflat_large_gsrFalse__beta_age_HCPFT
11
+ wandb: ⭐️ View project at https://stability.wandb.io/ckadirt/fMRI-foundation-model
12
+ wandb: 🚀 View run at https://stability.wandb.io/ckadirt/fMRI-foundation-model/runs/HCPflat_large_gsrFalse__beta_age_HCPFT_768d7c19-0891-45ae-8cff-9b10e484c8fe
13
+
14
+ slurmstepd: error: *** JOB 541357 ON ip-10-0-135-126 CANCELLED AT 2024-11-27T02:34:48 ***
15
+ slurmstepd: error: *** REASON: burst_buffer/lua: Stage-out in progress ***
541357.out ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-135-126
3
+ MASTER_PORT=11002
4
+ WORLD_SIZE=1
5
+ ------ ARGS -------
6
+ Namespace(found_model_name='HCPflat_large_gsrFalse_', epoch_checkpoint='epoch99.pth', model_suffix='beta', hcp_flat_path='/weka/proj-medarc/shared/HCP-Flat', batch_size=16, wandb_log=True, num_epochs=20, lr_scheduler_type='cycle', save_ckpt=False, seed=42, max_lr=0.0001, target='age', num_workers=10, weight_decay=1e-05, global_pool=True)
7
+ outdir /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/checkpoints/HCPflat_large_gsrFalse_
8
+ Loaded config.yaml from ckpt folder /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/checkpoints/HCPflat_large_gsrFalse_
9
+
10
+ __CONFIG__
11
+ base_lr = 0.001
12
+ batch_size = 32
13
+ ckpt_interval = 5
14
+ ckpt_saving = True
15
+ cls_embed = True
16
+ contrastive_loss_weight = 1.0
17
+ datasets_to_include = HCP
18
+ decoder_embed_dim = 512
19
+ grad_accumulation_steps = 1
20
+ grad_clip = 1.0
21
+ gsr = False
22
+ hcp_flat_path = /weka/proj-medarc/shared/HCP-Flat
23
+ mask_ratio = 0.75
24
+ model_name = HCPflat_large_gsrFalse_
25
+ no_qkv_bias = False
26
+ norm_pix_loss = False
27
+ nsd_flat_path = /weka/proj-medarc/shared/NSD-Flat
28
+ num_epochs = 100
29
+ num_frames = 16
30
+ num_samples_per_epoch = 200000
31
+ num_workers = 10
32
+ patch_size = 16
33
+ pct_masks_to_decode = 1
34
+ plotting = True
35
+ pred_t_dim = 8
36
+ print_interval = 20
37
+ probe_base_lr = 0.0003
38
+ probe_batch_size = 8
39
+ probe_num_epochs = 30
40
+ probe_num_samples_per_epoch = 100000
41
+ resume_from_ckpt = True
42
+ seed = 42
43
+ sep_pos_embed = True
44
+ t_patch_size = 2
45
+ test_num_samples_per_epoch = 50000
46
+ test_set = False
47
+ trunc_init = False
48
+ use_contrastive_loss = False
49
+ wandb_log = True
50
+
51
+
52
+ WORLD_SIZE=1
53
+ PID of this process = 2177170
54
+ global_pool = True
55
+ gsr = False
56
+ Creating datasets
57
+ Datasets ready
58
+ img_size (144, 320) patch_size (16, 16) frames 16 t_patch_size 2
59
+ model initialized
60
+ latest_checkpoint: epoch99.pth
61
+
62
+ Loaded checkpoint epoch99.pth from /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/checkpoints/HCPflat_large_gsrFalse_
63
+
64
+ Input dimension: 1024
65
+ total_steps 139140
66
+ wandb_config:
67
+ {'model_name': 'HCPflat_large_gsrFalse__HCP_FT_age', 'batch_size': 16, 'weight_decay': 1e-05, 'num_epochs': 20, 'seed': 42, 'lr_scheduler_type': 'cycle', 'save_ckpt': False, 'max_lr': 0.0001, 'target': 'age', 'num_workers': 10}
68
+ wandb_id: HCPflat_large_gsrFalse__beta_age_HCPFT_768d7c19-0891-45ae-8cff-9b10e484c8fe
541358.err ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2204713a23f58ebafbeda425a77ff1a4e7bea60e5b934e8fb8e8e1e655c0b9b
3
+ size 13423280
541358.out ADDED
@@ -0,0 +1,1470 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NUM_GPUS=1
2
+ MASTER_ADDR=ip-10-0-135-126
3
+ MASTER_PORT=11775
4
+ WORLD_SIZE=1
5
+ ------ ARGS -------
6
+ Namespace(found_model_name='HCPflat_large_gsrFalse_', epoch_checkpoint='epoch99.pth', model_suffix='beta', hcp_flat_path='/weka/proj-medarc/shared/HCP-Flat', batch_size=16, wandb_log=True, num_epochs=20, lr_scheduler_type='cycle', save_ckpt=False, seed=42, max_lr=0.0001, target='age', num_workers=10, weight_decay=1e-05, global_pool=True)
7
+ outdir /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/checkpoints/HCPflat_large_gsrFalse_
8
+ Loaded config.yaml from ckpt folder /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/checkpoints/HCPflat_large_gsrFalse_
9
+
10
+ __CONFIG__
11
+ base_lr = 0.001
12
+ batch_size = 32
13
+ ckpt_interval = 5
14
+ ckpt_saving = True
15
+ cls_embed = True
16
+ contrastive_loss_weight = 1.0
17
+ datasets_to_include = HCP
18
+ decoder_embed_dim = 512
19
+ grad_accumulation_steps = 1
20
+ grad_clip = 1.0
21
+ gsr = False
22
+ hcp_flat_path = /weka/proj-medarc/shared/HCP-Flat
23
+ mask_ratio = 0.75
24
+ model_name = HCPflat_large_gsrFalse_
25
+ no_qkv_bias = False
26
+ norm_pix_loss = False
27
+ nsd_flat_path = /weka/proj-medarc/shared/NSD-Flat
28
+ num_epochs = 100
29
+ num_frames = 16
30
+ num_samples_per_epoch = 200000
31
+ num_workers = 10
32
+ patch_size = 16
33
+ pct_masks_to_decode = 1
34
+ plotting = True
35
+ pred_t_dim = 8
36
+ print_interval = 20
37
+ probe_base_lr = 0.0003
38
+ probe_batch_size = 8
39
+ probe_num_epochs = 30
40
+ probe_num_samples_per_epoch = 100000
41
+ resume_from_ckpt = True
42
+ seed = 42
43
+ sep_pos_embed = True
44
+ t_patch_size = 2
45
+ test_num_samples_per_epoch = 50000
46
+ test_set = False
47
+ trunc_init = False
48
+ use_contrastive_loss = False
49
+ wandb_log = True
50
+
51
+
52
+ WORLD_SIZE=1
53
+ PID of this process = 2179123
54
+ global_pool = True
55
+ gsr = False
56
+ Creating datasets
57
+ Datasets ready
58
+ img_size (144, 320) patch_size (16, 16) frames 16 t_patch_size 2
59
+ model initialized
60
+ latest_checkpoint: epoch99.pth
61
+
62
+ Loaded checkpoint epoch99.pth from /weka/proj-fmri/ckadirt/fMRI-foundation-model/src/checkpoints/HCPflat_large_gsrFalse_
63
+
64
+ Input dimension: 1024
65
+ total_steps 139140
66
+ wandb_config:
67
+ {'model_name': 'HCPflat_large_gsrFalse__HCP_FT_age', 'batch_size': 16, 'weight_decay': 1e-05, 'num_epochs': 20, 'seed': 42, 'lr_scheduler_type': 'cycle', 'save_ckpt': False, 'max_lr': 0.0001, 'target': 'age', 'num_workers': 10}
68
+ wandb_id: HCPflat_large_gsrFalse__beta_age_HCPFT_d344d64d-8300-4465-8e75-b35200117944
69
+ Step [100/6957] - Training Loss: 0.3353 - Training MSE: 0.0294
70
+ Step [200/6957] - Training Loss: 0.2611 - Training MSE: 0.0268
71
+ Step [300/6957] - Training Loss: 0.4378 - Training MSE: 0.0261
72
+ Step [400/6957] - Training Loss: 0.5356 - Training MSE: 0.0252
73
+ Step [500/6957] - Training Loss: 0.4324 - Training MSE: 0.0248
74
+ Step [600/6957] - Training Loss: 0.4099 - Training MSE: 0.0242
75
+ Step [700/6957] - Training Loss: 0.4536 - Training MSE: 0.0239
76
+ Step [800/6957] - Training Loss: 0.4616 - Training MSE: 0.0238
77
+ Step [900/6957] - Training Loss: 0.5061 - Training MSE: 0.0237
78
+ Step [1000/6957] - Training Loss: 0.3758 - Training MSE: 0.0235
79
+ Step [1100/6957] - Training Loss: 0.3988 - Training MSE: 0.0234
80
+ Step [1200/6957] - Training Loss: 0.3735 - Training MSE: 0.0233
81
+ Step [1300/6957] - Training Loss: 0.2402 - Training MSE: 0.0234
82
+ Step [1400/6957] - Training Loss: 0.3710 - Training MSE: 0.0235
83
+ Step [1500/6957] - Training Loss: 0.2673 - Training MSE: 0.0234
84
+ Step [1600/6957] - Training Loss: 0.2171 - Training MSE: 0.0232
85
+ Step [1700/6957] - Training Loss: 0.4864 - Training MSE: 0.0231
86
+ Step [1800/6957] - Training Loss: 0.4091 - Training MSE: 0.0230
87
+ Step [1900/6957] - Training Loss: 0.2278 - Training MSE: 0.0230
88
+ Step [2000/6957] - Training Loss: 0.6462 - Training MSE: 0.0230
89
+ Step [2100/6957] - Training Loss: 0.2934 - Training MSE: 0.0229
90
+ Step [2200/6957] - Training Loss: 0.1503 - Training MSE: 0.0229
91
+ Step [2300/6957] - Training Loss: 0.2982 - Training MSE: 0.0228
92
+ Step [2400/6957] - Training Loss: 0.5785 - Training MSE: 0.0228
93
+ Step [2500/6957] - Training Loss: 0.4260 - Training MSE: 0.0227
94
+ Step [2600/6957] - Training Loss: 0.3524 - Training MSE: 0.0227
95
+ Step [2700/6957] - Training Loss: 0.4194 - Training MSE: 0.0226
96
+ Step [2800/6957] - Training Loss: 0.3239 - Training MSE: 0.0225
97
+ Step [2900/6957] - Training Loss: 0.6227 - Training MSE: 0.0225
98
+ Step [3000/6957] - Training Loss: 0.4483 - Training MSE: 0.0224
99
+ Step [3100/6957] - Training Loss: 0.2457 - Training MSE: 0.0224
100
+ Step [3200/6957] - Training Loss: 0.3748 - Training MSE: 0.0223
101
+ Step [3300/6957] - Training Loss: 0.3349 - Training MSE: 0.0222
102
+ Step [3400/6957] - Training Loss: 0.3584 - Training MSE: 0.0222
103
+ Step [3500/6957] - Training Loss: 0.4761 - Training MSE: 0.0222
104
+ Step [3600/6957] - Training Loss: 0.2872 - Training MSE: 0.0221
105
+ Step [3700/6957] - Training Loss: 0.3720 - Training MSE: 0.0220
106
+ Step [3800/6957] - Training Loss: 0.1850 - Training MSE: 0.0220
107
+ Step [3900/6957] - Training Loss: 0.0889 - Training MSE: 0.0219
108
+ Step [4000/6957] - Training Loss: 0.3948 - Training MSE: 0.0219
109
+ Step [4100/6957] - Training Loss: 0.2272 - Training MSE: 0.0218
110
+ Step [4200/6957] - Training Loss: 0.1170 - Training MSE: 0.0218
111
+ Step [4300/6957] - Training Loss: 0.4015 - Training MSE: 0.0217
112
+ Step [4400/6957] - Training Loss: 0.4192 - Training MSE: 0.0217
113
+ Step [4500/6957] - Training Loss: 0.3057 - Training MSE: 0.0216
114
+ Step [4600/6957] - Training Loss: 0.3710 - Training MSE: 0.0216
115
+ Step [4700/6957] - Training Loss: 0.1154 - Training MSE: 0.0215
116
+ Step [4800/6957] - Training Loss: 0.2176 - Training MSE: 0.0215
117
+ Step [4900/6957] - Training Loss: 0.2078 - Training MSE: 0.0214
118
+ Step [5000/6957] - Training Loss: 0.3973 - Training MSE: 0.0214
119
+ Step [5100/6957] - Training Loss: 0.0728 - Training MSE: 0.0213
120
+ Step [5200/6957] - Training Loss: 0.2381 - Training MSE: 0.0212
121
+ Step [5300/6957] - Training Loss: 0.3896 - Training MSE: 0.0212
122
+ Step [5400/6957] - Training Loss: 0.2126 - Training MSE: 0.0211
123
+ Step [5500/6957] - Training Loss: 0.4339 - Training MSE: 0.0210
124
+ Step [5600/6957] - Training Loss: 0.2140 - Training MSE: 0.0209
125
+ Step [5700/6957] - Training Loss: 0.3126 - Training MSE: 0.0209
126
+ Step [5800/6957] - Training Loss: 0.1269 - Training MSE: 0.0208
127
+ Step [5900/6957] - Training Loss: 0.1721 - Training MSE: 0.0207
128
+ Step [6000/6957] - Training Loss: 0.1690 - Training MSE: 0.0206
129
+ Step [6100/6957] - Training Loss: 0.0747 - Training MSE: 0.0205
130
+ Step [6200/6957] - Training Loss: 0.3791 - Training MSE: 0.0204
131
+ Step [6300/6957] - Training Loss: 0.3069 - Training MSE: 0.0203
132
+ Step [6400/6957] - Training Loss: 0.1519 - Training MSE: 0.0203
133
+ Step [6500/6957] - Training Loss: 0.3105 - Training MSE: 0.0202
134
+ Step [6600/6957] - Training Loss: 0.2934 - Training MSE: 0.0201
135
+ Step [6700/6957] - Training Loss: 0.2333 - Training MSE: 0.0200
136
+ Step [6800/6957] - Training Loss: 0.1637 - Training MSE: 0.0199
137
+ Step [6900/6957] - Training Loss: 0.3849 - Training MSE: 0.0198
138
+ Epoch [1/20] - Training Loss: 0.3168, Training MSE: 0.0198 - Validation Loss: 0.3809, Validation MSE: 0.0238
139
+ Step [100/6957] - Training Loss: 0.2016 - Training MSE: 0.0111
140
+ Step [200/6957] - Training Loss: 0.0951 - Training MSE: 0.0108
141
+ Step [300/6957] - Training Loss: 0.0852 - Training MSE: 0.0104
142
+ Step [400/6957] - Training Loss: 0.1962 - Training MSE: 0.0103
143
+ Step [500/6957] - Training Loss: 0.1836 - Training MSE: 0.0104
144
+ Step [600/6957] - Training Loss: 0.1019 - Training MSE: 0.0104
145
+ Step [700/6957] - Training Loss: 0.1209 - Training MSE: 0.0104
146
+ Step [800/6957] - Training Loss: 0.1136 - Training MSE: 0.0103
147
+ Step [900/6957] - Training Loss: 0.1949 - Training MSE: 0.0106
148
+ Step [1000/6957] - Training Loss: 0.0763 - Training MSE: 0.0104
149
+ Step [1100/6957] - Training Loss: 0.1061 - Training MSE: 0.0103
150
+ Step [1200/6957] - Training Loss: 0.2156 - Training MSE: 0.0103
151
+ Step [1300/6957] - Training Loss: 0.1115 - Training MSE: 0.0102
152
+ Step [1400/6957] - Training Loss: 0.1409 - Training MSE: 0.0102
153
+ Step [1500/6957] - Training Loss: 0.1089 - Training MSE: 0.0102
154
+ Step [1600/6957] - Training Loss: 0.1377 - Training MSE: 0.0101
155
+ Step [1700/6957] - Training Loss: 0.1520 - Training MSE: 0.0101
156
+ Step [1800/6957] - Training Loss: 0.1482 - Training MSE: 0.0100
157
+ Step [1900/6957] - Training Loss: 0.1291 - Training MSE: 0.0099
158
+ Step [2000/6957] - Training Loss: 0.0612 - Training MSE: 0.0098
159
+ Step [2100/6957] - Training Loss: 0.1121 - Training MSE: 0.0098
160
+ Step [2200/6957] - Training Loss: 0.0997 - Training MSE: 0.0097
161
+ Step [2300/6957] - Training Loss: 0.1223 - Training MSE: 0.0096
162
+ Step [2400/6957] - Training Loss: 0.1095 - Training MSE: 0.0095
163
+ Step [2500/6957] - Training Loss: 0.2307 - Training MSE: 0.0094
164
+ Step [2600/6957] - Training Loss: 0.0904 - Training MSE: 0.0093
165
+ Step [2700/6957] - Training Loss: 0.0651 - Training MSE: 0.0093
166
+ Step [2800/6957] - Training Loss: 0.0555 - Training MSE: 0.0092
167
+ Step [2900/6957] - Training Loss: 0.0777 - Training MSE: 0.0091
168
+ Step [3000/6957] - Training Loss: 0.1194 - Training MSE: 0.0091
169
+ Step [3100/6957] - Training Loss: 0.1656 - Training MSE: 0.0090
170
+ Step [3200/6957] - Training Loss: 0.0290 - Training MSE: 0.0089
171
+ Step [3300/6957] - Training Loss: 0.0567 - Training MSE: 0.0088
172
+ Step [3400/6957] - Training Loss: 0.1812 - Training MSE: 0.0088
173
+ Step [3500/6957] - Training Loss: 0.0548 - Training MSE: 0.0088
174
+ Step [3600/6957] - Training Loss: 0.0523 - Training MSE: 0.0087
175
+ Step [3700/6957] - Training Loss: 0.0279 - Training MSE: 0.0087
176
+ Step [3800/6957] - Training Loss: 0.1982 - Training MSE: 0.0086
177
+ Step [3900/6957] - Training Loss: 0.0840 - Training MSE: 0.0086
178
+ Step [4000/6957] - Training Loss: 0.0642 - Training MSE: 0.0085
179
+ Step [4100/6957] - Training Loss: 0.1927 - Training MSE: 0.0084
180
+ Step [4200/6957] - Training Loss: 0.0618 - Training MSE: 0.0084
181
+ Step [4300/6957] - Training Loss: 0.1261 - Training MSE: 0.0083
182
+ Step [4400/6957] - Training Loss: 0.0420 - Training MSE: 0.0082
183
+ Step [4500/6957] - Training Loss: 0.0786 - Training MSE: 0.0082
184
+ Step [4600/6957] - Training Loss: 0.0549 - Training MSE: 0.0081
185
+ Step [4700/6957] - Training Loss: 0.0352 - Training MSE: 0.0080
186
+ Step [4800/6957] - Training Loss: 0.0486 - Training MSE: 0.0079
187
+ Step [4900/6957] - Training Loss: 0.0882 - Training MSE: 0.0079
188
+ Step [5000/6957] - Training Loss: 0.0627 - Training MSE: 0.0078
189
+ Step [5100/6957] - Training Loss: 0.1265 - Training MSE: 0.0078
190
+ Step [5200/6957] - Training Loss: 0.0153 - Training MSE: 0.0077
191
+ Step [5300/6957] - Training Loss: 0.0762 - Training MSE: 0.0077
192
+ Step [5400/6957] - Training Loss: 0.0535 - Training MSE: 0.0076
193
+ Step [5500/6957] - Training Loss: 0.0420 - Training MSE: 0.0076
194
+ Step [5600/6957] - Training Loss: 0.0499 - Training MSE: 0.0076
195
+ Step [5700/6957] - Training Loss: 0.0614 - Training MSE: 0.0075
196
+ Step [5800/6957] - Training Loss: 0.1466 - Training MSE: 0.0075
197
+ Step [5900/6957] - Training Loss: 0.0475 - Training MSE: 0.0075
198
+ Step [6000/6957] - Training Loss: 0.1005 - Training MSE: 0.0074
199
+ Step [6100/6957] - Training Loss: 0.0621 - Training MSE: 0.0073
200
+ Step [6200/6957] - Training Loss: 0.0626 - Training MSE: 0.0073
201
+ Step [6300/6957] - Training Loss: 0.1202 - Training MSE: 0.0072
202
+ Step [6400/6957] - Training Loss: 0.0299 - Training MSE: 0.0072
203
+ Step [6500/6957] - Training Loss: 0.0393 - Training MSE: 0.0071
204
+ Step [6600/6957] - Training Loss: 0.0790 - Training MSE: 0.0071
205
+ Step [6700/6957] - Training Loss: 0.1032 - Training MSE: 0.0071
206
+ Step [6800/6957] - Training Loss: 0.0074 - Training MSE: 0.0070
207
+ Step [6900/6957] - Training Loss: 0.0399 - Training MSE: 0.0070
208
+ Epoch [2/20] - Training Loss: 0.1113, Training MSE: 0.0070 - Validation Loss: 0.3821, Validation MSE: 0.0239
209
+ Step [100/6957] - Training Loss: 0.0182 - Training MSE: 0.0025
210
+ Step [200/6957] - Training Loss: 0.0437 - Training MSE: 0.0028
211
+ Step [300/6957] - Training Loss: 0.0455 - Training MSE: 0.0028
212
+ Step [400/6957] - Training Loss: 0.0232 - Training MSE: 0.0027
213
+ Step [500/6957] - Training Loss: 0.0341 - Training MSE: 0.0027
214
+ Step [600/6957] - Training Loss: 0.0408 - Training MSE: 0.0028
215
+ Step [700/6957] - Training Loss: 0.0904 - Training MSE: 0.0031
216
+ Step [800/6957] - Training Loss: 0.0435 - Training MSE: 0.0034
217
+ Step [900/6957] - Training Loss: 0.0163 - Training MSE: 0.0033
218
+ Step [1000/6957] - Training Loss: 0.0254 - Training MSE: 0.0033
219
+ Step [1100/6957] - Training Loss: 0.0347 - Training MSE: 0.0033
220
+ Step [1200/6957] - Training Loss: 0.1033 - Training MSE: 0.0033
221
+ Step [1300/6957] - Training Loss: 0.0276 - Training MSE: 0.0033
222
+ Step [1400/6957] - Training Loss: 0.0292 - Training MSE: 0.0033
223
+ Step [1500/6957] - Training Loss: 0.0164 - Training MSE: 0.0033
224
+ Step [1600/6957] - Training Loss: 0.0184 - Training MSE: 0.0032
225
+ Step [1700/6957] - Training Loss: 0.0209 - Training MSE: 0.0032
226
+ Step [1800/6957] - Training Loss: 0.0255 - Training MSE: 0.0031
227
+ Step [1900/6957] - Training Loss: 0.0433 - Training MSE: 0.0031
228
+ Step [2000/6957] - Training Loss: 0.0994 - Training MSE: 0.0031
229
+ Step [2100/6957] - Training Loss: 0.0184 - Training MSE: 0.0031
230
+ Step [2200/6957] - Training Loss: 0.0773 - Training MSE: 0.0031
231
+ Step [2300/6957] - Training Loss: 0.0191 - Training MSE: 0.0031
232
+ Step [2400/6957] - Training Loss: 0.0062 - Training MSE: 0.0030
233
+ Step [2500/6957] - Training Loss: 0.0859 - Training MSE: 0.0030
234
+ Step [2600/6957] - Training Loss: 0.0404 - Training MSE: 0.0030
235
+ Step [2700/6957] - Training Loss: 0.1087 - Training MSE: 0.0031
236
+ Step [2800/6957] - Training Loss: 0.0550 - Training MSE: 0.0031
237
+ Step [2900/6957] - Training Loss: 0.0737 - Training MSE: 0.0031
238
+ Step [3000/6957] - Training Loss: 0.0278 - Training MSE: 0.0031
239
+ Step [3100/6957] - Training Loss: 0.0095 - Training MSE: 0.0030
240
+ Step [3200/6957] - Training Loss: 0.0365 - Training MSE: 0.0030
241
+ Step [3300/6957] - Training Loss: 0.0267 - Training MSE: 0.0030
242
+ Step [3400/6957] - Training Loss: 0.0054 - Training MSE: 0.0029
243
+ Step [3500/6957] - Training Loss: 0.0677 - Training MSE: 0.0029
244
+ Step [3600/6957] - Training Loss: 0.0237 - Training MSE: 0.0029
245
+ Step [3700/6957] - Training Loss: 0.0996 - Training MSE: 0.0029
246
+ Step [3800/6957] - Training Loss: 0.0062 - Training MSE: 0.0029
247
+ Step [3900/6957] - Training Loss: 0.1073 - Training MSE: 0.0029
248
+ Step [4000/6957] - Training Loss: 0.0340 - Training MSE: 0.0029
249
+ Step [4100/6957] - Training Loss: 0.0457 - Training MSE: 0.0028
250
+ Step [4200/6957] - Training Loss: 0.0783 - Training MSE: 0.0028
251
+ Step [4300/6957] - Training Loss: 0.0980 - Training MSE: 0.0028
252
+ Step [4400/6957] - Training Loss: 0.0407 - Training MSE: 0.0028
253
+ Step [4500/6957] - Training Loss: 0.1220 - Training MSE: 0.0028
254
+ Step [4600/6957] - Training Loss: 0.0222 - Training MSE: 0.0028
255
+ Step [4700/6957] - Training Loss: 0.0079 - Training MSE: 0.0028
256
+ Step [4800/6957] - Training Loss: 0.0223 - Training MSE: 0.0027
257
+ Step [4900/6957] - Training Loss: 0.0140 - Training MSE: 0.0027
258
+ Step [5000/6957] - Training Loss: 0.0385 - Training MSE: 0.0027
259
+ Step [5100/6957] - Training Loss: 0.1232 - Training MSE: 0.0027
260
+ Step [5200/6957] - Training Loss: 0.0204 - Training MSE: 0.0027
261
+ Step [5300/6957] - Training Loss: 0.0187 - Training MSE: 0.0027
262
+ Step [5400/6957] - Training Loss: 0.0767 - Training MSE: 0.0027
263
+ Step [5500/6957] - Training Loss: 0.0465 - Training MSE: 0.0027
264
+ Step [5600/6957] - Training Loss: 0.0126 - Training MSE: 0.0027
265
+ Step [5700/6957] - Training Loss: 0.0061 - Training MSE: 0.0027
266
+ Step [5800/6957] - Training Loss: 0.0120 - Training MSE: 0.0027
267
+ Step [5900/6957] - Training Loss: 0.0580 - Training MSE: 0.0027
268
+ Step [6000/6957] - Training Loss: 0.0131 - Training MSE: 0.0027
269
+ Step [6100/6957] - Training Loss: 0.0497 - Training MSE: 0.0027
270
+ Step [6200/6957] - Training Loss: 0.0713 - Training MSE: 0.0027
271
+ Step [6300/6957] - Training Loss: 0.0221 - Training MSE: 0.0027
272
+ Step [6400/6957] - Training Loss: 0.0835 - Training MSE: 0.0027
273
+ Step [6500/6957] - Training Loss: 0.0409 - Training MSE: 0.0027
274
+ Step [6600/6957] - Training Loss: 0.0232 - Training MSE: 0.0027
275
+ Step [6700/6957] - Training Loss: 0.0029 - Training MSE: 0.0026
276
+ Step [6800/6957] - Training Loss: 0.0060 - Training MSE: 0.0026
277
+ Step [6900/6957] - Training Loss: 0.0543 - Training MSE: 0.0026
278
+ Epoch [3/20] - Training Loss: 0.0415, Training MSE: 0.0026 - Validation Loss: 0.4569, Validation MSE: 0.0286
279
+ Step [100/6957] - Training Loss: 0.1452 - Training MSE: 0.0022
280
+ Step [200/6957] - Training Loss: 0.0052 - Training MSE: 0.0024
281
+ Step [300/6957] - Training Loss: 0.0096 - Training MSE: 0.0021
282
+ Step [400/6957] - Training Loss: 0.0192 - Training MSE: 0.0023
283
+ Step [500/6957] - Training Loss: 0.0191 - Training MSE: 0.0021
284
+ Step [600/6957] - Training Loss: 0.0040 - Training MSE: 0.0018
285
+ Step [700/6957] - Training Loss: 0.0555 - Training MSE: 0.0018
286
+ Step [800/6957] - Training Loss: 0.0046 - Training MSE: 0.0017
287
+ Step [900/6957] - Training Loss: 0.0146 - Training MSE: 0.0017
288
+ Step [1000/6957] - Training Loss: 0.0029 - Training MSE: 0.0016
289
+ Step [1100/6957] - Training Loss: 0.0076 - Training MSE: 0.0016
290
+ Step [1200/6957] - Training Loss: 0.0017 - Training MSE: 0.0016
291
+ Step [1300/6957] - Training Loss: 0.2443 - Training MSE: 0.0016
292
+ Step [1400/6957] - Training Loss: 0.0048 - Training MSE: 0.0016
293
+ Step [1500/6957] - Training Loss: 0.0084 - Training MSE: 0.0015
294
+ Step [1600/6957] - Training Loss: 0.0072 - Training MSE: 0.0015
295
+ Step [1700/6957] - Training Loss: 0.0022 - Training MSE: 0.0014
296
+ Step [1800/6957] - Training Loss: 0.0091 - Training MSE: 0.0014
297
+ Step [1900/6957] - Training Loss: 0.0623 - Training MSE: 0.0015
298
+ Step [2000/6957] - Training Loss: 0.0351 - Training MSE: 0.0015
299
+ Step [2100/6957] - Training Loss: 0.0310 - Training MSE: 0.0015
300
+ Step [2200/6957] - Training Loss: 0.0043 - Training MSE: 0.0015
301
+ Step [2300/6957] - Training Loss: 0.1778 - Training MSE: 0.0015
302
+ Step [2400/6957] - Training Loss: 0.0053 - Training MSE: 0.0015
303
+ Step [2500/6957] - Training Loss: 0.0027 - Training MSE: 0.0015
304
+ Step [2600/6957] - Training Loss: 0.0096 - Training MSE: 0.0015
305
+ Step [2700/6957] - Training Loss: 0.0045 - Training MSE: 0.0015
306
+ Step [2800/6957] - Training Loss: 0.0222 - Training MSE: 0.0016
307
+ Step [2900/6957] - Training Loss: 0.0025 - Training MSE: 0.0016
308
+ Step [3000/6957] - Training Loss: 0.0044 - Training MSE: 0.0016
309
+ Step [3100/6957] - Training Loss: 0.0071 - Training MSE: 0.0015
310
+ Step [3200/6957] - Training Loss: 0.0092 - Training MSE: 0.0015
311
+ Step [3300/6957] - Training Loss: 0.0054 - Training MSE: 0.0015
312
+ Step [3400/6957] - Training Loss: 0.0041 - Training MSE: 0.0015
313
+ Step [3500/6957] - Training Loss: 0.0016 - Training MSE: 0.0015
314
+ Step [3600/6957] - Training Loss: 0.0061 - Training MSE: 0.0015
315
+ Step [3700/6957] - Training Loss: 0.0033 - Training MSE: 0.0015
316
+ Step [3800/6957] - Training Loss: 0.0051 - Training MSE: 0.0015
317
+ Step [3900/6957] - Training Loss: 0.0161 - Training MSE: 0.0015
318
+ Step [4000/6957] - Training Loss: 0.0048 - Training MSE: 0.0015
319
+ Step [4100/6957] - Training Loss: 0.0014 - Training MSE: 0.0015
320
+ Step [4200/6957] - Training Loss: 0.0726 - Training MSE: 0.0015
321
+ Step [4300/6957] - Training Loss: 0.0725 - Training MSE: 0.0015
322
+ Step [4400/6957] - Training Loss: 0.0185 - Training MSE: 0.0015
323
+ Step [4500/6957] - Training Loss: 0.0060 - Training MSE: 0.0015
324
+ Step [4600/6957] - Training Loss: 0.0278 - Training MSE: 0.0015
325
+ Step [4700/6957] - Training Loss: 0.0419 - Training MSE: 0.0014
326
+ Step [4800/6957] - Training Loss: 0.0030 - Training MSE: 0.0014
327
+ Step [4900/6957] - Training Loss: 0.1963 - Training MSE: 0.0015
328
+ Step [5000/6957] - Training Loss: 0.0031 - Training MSE: 0.0015
329
+ Step [5100/6957] - Training Loss: 0.0334 - Training MSE: 0.0015
330
+ Step [5200/6957] - Training Loss: 0.0034 - Training MSE: 0.0015
331
+ Step [5300/6957] - Training Loss: 0.0039 - Training MSE: 0.0015
332
+ Step [5400/6957] - Training Loss: 0.0140 - Training MSE: 0.0015
333
+ Step [5500/6957] - Training Loss: 0.0021 - Training MSE: 0.0015
334
+ Step [5600/6957] - Training Loss: 0.0461 - Training MSE: 0.0015
335
+ Step [5700/6957] - Training Loss: 0.0448 - Training MSE: 0.0015
336
+ Step [5800/6957] - Training Loss: 0.0549 - Training MSE: 0.0015
337
+ Step [5900/6957] - Training Loss: 0.0014 - Training MSE: 0.0015
338
+ Step [6000/6957] - Training Loss: 0.0355 - Training MSE: 0.0015
339
+ Step [6100/6957] - Training Loss: 0.0026 - Training MSE: 0.0015
340
+ Step [6200/6957] - Training Loss: 0.0021 - Training MSE: 0.0015
341
+ Step [6300/6957] - Training Loss: 0.0119 - Training MSE: 0.0015
342
+ Step [6400/6957] - Training Loss: 0.0017 - Training MSE: 0.0015
343
+ Step [6500/6957] - Training Loss: 0.0041 - Training MSE: 0.0015
344
+ Step [6600/6957] - Training Loss: 0.0021 - Training MSE: 0.0015
345
+ Step [6700/6957] - Training Loss: 0.0290 - Training MSE: 0.0014
346
+ Step [6800/6957] - Training Loss: 0.0036 - Training MSE: 0.0014
347
+ Step [6900/6957] - Training Loss: 0.0089 - Training MSE: 0.0015
348
+ Epoch [4/20] - Training Loss: 0.0233, Training MSE: 0.0015 - Validation Loss: 0.4694, Validation MSE: 0.0293
349
+ Step [100/6957] - Training Loss: 0.0033 - Training MSE: 0.0014
350
+ Step [200/6957] - Training Loss: 0.0049 - Training MSE: 0.0014
351
+ Step [300/6957] - Training Loss: 0.0239 - Training MSE: 0.0014
352
+ Step [400/6957] - Training Loss: 0.0086 - Training MSE: 0.0012
353
+ Step [500/6957] - Training Loss: 0.0233 - Training MSE: 0.0010
354
+ Step [600/6957] - Training Loss: 0.0147 - Training MSE: 0.0010
355
+ Step [700/6957] - Training Loss: 0.0022 - Training MSE: 0.0009
356
+ Step [800/6957] - Training Loss: 0.0691 - Training MSE: 0.0010
357
+ Step [900/6957] - Training Loss: 0.0010 - Training MSE: 0.0010
358
+ Step [1000/6957] - Training Loss: 0.0088 - Training MSE: 0.0011
359
+ Step [1100/6957] - Training Loss: 0.0432 - Training MSE: 0.0010
360
+ Step [1200/6957] - Training Loss: 0.0146 - Training MSE: 0.0010
361
+ Step [1300/6957] - Training Loss: 0.0025 - Training MSE: 0.0010
362
+ Step [1400/6957] - Training Loss: 0.0050 - Training MSE: 0.0010
363
+ Step [1500/6957] - Training Loss: 0.0044 - Training MSE: 0.0011
364
+ Step [1600/6957] - Training Loss: 0.0100 - Training MSE: 0.0011
365
+ Step [1700/6957] - Training Loss: 0.0373 - Training MSE: 0.0011
366
+ Step [1800/6957] - Training Loss: 0.0562 - Training MSE: 0.0011
367
+ Step [1900/6957] - Training Loss: 0.0343 - Training MSE: 0.0012
368
+ Step [2000/6957] - Training Loss: 0.0393 - Training MSE: 0.0012
369
+ Step [2100/6957] - Training Loss: 0.0077 - Training MSE: 0.0012
370
+ Step [2200/6957] - Training Loss: 0.0811 - Training MSE: 0.0012
371
+ Step [2300/6957] - Training Loss: 0.0287 - Training MSE: 0.0012
372
+ Step [2400/6957] - Training Loss: 0.0049 - Training MSE: 0.0012
373
+ Step [2500/6957] - Training Loss: 0.0102 - Training MSE: 0.0012
374
+ Step [2600/6957] - Training Loss: 0.0524 - Training MSE: 0.0012
375
+ Step [2700/6957] - Training Loss: 0.0213 - Training MSE: 0.0012
376
+ Step [2800/6957] - Training Loss: 0.0011 - Training MSE: 0.0012
377
+ Step [2900/6957] - Training Loss: 0.0007 - Training MSE: 0.0012
378
+ Step [3000/6957] - Training Loss: 0.0252 - Training MSE: 0.0012
379
+ Step [3100/6957] - Training Loss: 0.0061 - Training MSE: 0.0012
380
+ Step [3200/6957] - Training Loss: 0.0013 - Training MSE: 0.0012
381
+ Step [3300/6957] - Training Loss: 0.0046 - Training MSE: 0.0012
382
+ Step [3400/6957] - Training Loss: 0.0386 - Training MSE: 0.0012
383
+ Step [3500/6957] - Training Loss: 0.0021 - Training MSE: 0.0012
384
+ Step [3600/6957] - Training Loss: 0.0023 - Training MSE: 0.0012
385
+ Step [3700/6957] - Training Loss: 0.0050 - Training MSE: 0.0011
386
+ Step [3800/6957] - Training Loss: 0.0320 - Training MSE: 0.0011
387
+ Step [3900/6957] - Training Loss: 0.0047 - Training MSE: 0.0011
388
+ Step [4000/6957] - Training Loss: 0.0053 - Training MSE: 0.0011
389
+ Step [4100/6957] - Training Loss: 0.0029 - Training MSE: 0.0011
390
+ Step [4200/6957] - Training Loss: 0.0021 - Training MSE: 0.0011
391
+ Step [4300/6957] - Training Loss: 0.0082 - Training MSE: 0.0011
392
+ Step [4400/6957] - Training Loss: 0.0021 - Training MSE: 0.0011
393
+ Step [4500/6957] - Training Loss: 0.0034 - Training MSE: 0.0011
394
+ Step [4600/6957] - Training Loss: 0.0016 - Training MSE: 0.0011
395
+ Step [4700/6957] - Training Loss: 0.0408 - Training MSE: 0.0012
396
+ Step [4800/6957] - Training Loss: 0.0056 - Training MSE: 0.0012
397
+ Step [4900/6957] - Training Loss: 0.0018 - Training MSE: 0.0012
398
+ Step [5000/6957] - Training Loss: 0.0031 - Training MSE: 0.0011
399
+ Step [5100/6957] - Training Loss: 0.0463 - Training MSE: 0.0011
400
+ Step [5200/6957] - Training Loss: 0.0009 - Training MSE: 0.0011
401
+ Step [5300/6957] - Training Loss: 0.0042 - Training MSE: 0.0011
402
+ Step [5400/6957] - Training Loss: 0.0024 - Training MSE: 0.0011
403
+ Step [5500/6957] - Training Loss: 0.0071 - Training MSE: 0.0011
404
+ Step [5600/6957] - Training Loss: 0.0008 - Training MSE: 0.0011
405
+ Step [5700/6957] - Training Loss: 0.0438 - Training MSE: 0.0011
406
+ Step [5800/6957] - Training Loss: 0.0116 - Training MSE: 0.0011
407
+ Step [5900/6957] - Training Loss: 0.0138 - Training MSE: 0.0011
408
+ Step [6000/6957] - Training Loss: 0.0010 - Training MSE: 0.0011
409
+ Step [6100/6957] - Training Loss: 0.0008 - Training MSE: 0.0011
410
+ Step [6200/6957] - Training Loss: 0.0719 - Training MSE: 0.0011
411
+ Step [6300/6957] - Training Loss: 0.0007 - Training MSE: 0.0011
412
+ Step [6400/6957] - Training Loss: 0.0035 - Training MSE: 0.0011
413
+ Step [6500/6957] - Training Loss: 0.0058 - Training MSE: 0.0011
414
+ Step [6600/6957] - Training Loss: 0.0007 - Training MSE: 0.0011
415
+ Step [6700/6957] - Training Loss: 0.0015 - Training MSE: 0.0011
416
+ Step [6800/6957] - Training Loss: 0.0011 - Training MSE: 0.0011
417
+ Step [6900/6957] - Training Loss: 0.0561 - Training MSE: 0.0011
418
+ Epoch [5/20] - Training Loss: 0.0174, Training MSE: 0.0011 - Validation Loss: 0.4568, Validation MSE: 0.0285
419
+ Step [100/6957] - Training Loss: 0.0019 - Training MSE: 0.0006
420
+ Step [200/6957] - Training Loss: 0.0025 - Training MSE: 0.0006
421
+ Step [300/6957] - Training Loss: 0.0003 - Training MSE: 0.0006
422
+ Step [400/6957] - Training Loss: 0.0070 - Training MSE: 0.0006
423
+ Step [500/6957] - Training Loss: 0.0369 - Training MSE: 0.0006
424
+ Step [600/6957] - Training Loss: 0.0011 - Training MSE: 0.0006
425
+ Step [700/6957] - Training Loss: 0.0022 - Training MSE: 0.0007
426
+ Step [800/6957] - Training Loss: 0.0053 - Training MSE: 0.0007
427
+ Step [900/6957] - Training Loss: 0.0101 - Training MSE: 0.0008
428
+ Step [1000/6957] - Training Loss: 0.0458 - Training MSE: 0.0008
429
+ Step [1100/6957] - Training Loss: 0.0078 - Training MSE: 0.0008
430
+ Step [1200/6957] - Training Loss: 0.0010 - Training MSE: 0.0008
431
+ Step [1300/6957] - Training Loss: 0.0014 - Training MSE: 0.0008
432
+ Step [1400/6957] - Training Loss: 0.0018 - Training MSE: 0.0008
433
+ Step [1500/6957] - Training Loss: 0.0660 - Training MSE: 0.0008
434
+ Step [1600/6957] - Training Loss: 0.0113 - Training MSE: 0.0009
435
+ Step [1700/6957] - Training Loss: 0.0038 - Training MSE: 0.0010
436
+ Step [1800/6957] - Training Loss: 0.0625 - Training MSE: 0.0010
437
+ Step [1900/6957] - Training Loss: 0.0008 - Training MSE: 0.0010
438
+ Step [2000/6957] - Training Loss: 0.0186 - Training MSE: 0.0011
439
+ Step [2100/6957] - Training Loss: 0.0016 - Training MSE: 0.0010
440
+ Step [2200/6957] - Training Loss: 0.0019 - Training MSE: 0.0010
441
+ Step [2300/6957] - Training Loss: 0.0005 - Training MSE: 0.0010
442
+ Step [2400/6957] - Training Loss: 0.0057 - Training MSE: 0.0010
443
+ Step [2500/6957] - Training Loss: 0.0435 - Training MSE: 0.0010
444
+ Step [2600/6957] - Training Loss: 0.0101 - Training MSE: 0.0010
445
+ Step [2700/6957] - Training Loss: 0.0023 - Training MSE: 0.0010
446
+ Step [2800/6957] - Training Loss: 0.0014 - Training MSE: 0.0010
447
+ Step [2900/6957] - Training Loss: 0.0008 - Training MSE: 0.0010
448
+ Step [3000/6957] - Training Loss: 0.0002 - Training MSE: 0.0010
449
+ Step [3100/6957] - Training Loss: 0.0017 - Training MSE: 0.0009
450
+ Step [3200/6957] - Training Loss: 0.0030 - Training MSE: 0.0009
451
+ Step [3300/6957] - Training Loss: 0.0011 - Training MSE: 0.0009
452
+ Step [3400/6957] - Training Loss: 0.0027 - Training MSE: 0.0009
453
+ Step [3500/6957] - Training Loss: 0.0016 - Training MSE: 0.0009
454
+ Step [3600/6957] - Training Loss: 0.0071 - Training MSE: 0.0009
455
+ Step [3700/6957] - Training Loss: 0.0020 - Training MSE: 0.0009
456
+ Step [3800/6957] - Training Loss: 0.0609 - Training MSE: 0.0009
457
+ Step [3900/6957] - Training Loss: 0.0014 - Training MSE: 0.0009
458
+ Step [4000/6957] - Training Loss: 0.0020 - Training MSE: 0.0009
459
+ Step [4100/6957] - Training Loss: 0.0459 - Training MSE: 0.0009
460
+ Step [4200/6957] - Training Loss: 0.0027 - Training MSE: 0.0009
461
+ Step [4300/6957] - Training Loss: 0.0003 - Training MSE: 0.0009
462
+ Step [4400/6957] - Training Loss: 0.0009 - Training MSE: 0.0009
463
+ Step [4500/6957] - Training Loss: 0.0010 - Training MSE: 0.0008
464
+ Step [4600/6957] - Training Loss: 0.0004 - Training MSE: 0.0008
465
+ Step [4700/6957] - Training Loss: 0.0223 - Training MSE: 0.0008
466
+ Step [4800/6957] - Training Loss: 0.0084 - Training MSE: 0.0009
467
+ Step [4900/6957] - Training Loss: 0.0016 - Training MSE: 0.0009
468
+ Step [5000/6957] - Training Loss: 0.0214 - Training MSE: 0.0009
469
+ Step [5100/6957] - Training Loss: 0.0050 - Training MSE: 0.0009
470
+ Step [5200/6957] - Training Loss: 0.0034 - Training MSE: 0.0009
471
+ Step [5300/6957] - Training Loss: 0.0339 - Training MSE: 0.0009
472
+ Step [5400/6957] - Training Loss: 0.0222 - Training MSE: 0.0009
473
+ Step [5500/6957] - Training Loss: 0.0016 - Training MSE: 0.0009
474
+ Step [5600/6957] - Training Loss: 0.0267 - Training MSE: 0.0009
475
+ Step [5700/6957] - Training Loss: 0.0015 - Training MSE: 0.0009
476
+ Step [5800/6957] - Training Loss: 0.0064 - Training MSE: 0.0009
477
+ Step [5900/6957] - Training Loss: 0.0026 - Training MSE: 0.0008
478
+ Step [6000/6957] - Training Loss: 0.0308 - Training MSE: 0.0008
479
+ Step [6100/6957] - Training Loss: 0.0045 - Training MSE: 0.0008
480
+ Step [6200/6957] - Training Loss: 0.0064 - Training MSE: 0.0008
481
+ Step [6300/6957] - Training Loss: 0.0015 - Training MSE: 0.0008
482
+ Step [6400/6957] - Training Loss: 0.0049 - Training MSE: 0.0008
483
+ Step [6500/6957] - Training Loss: 0.0029 - Training MSE: 0.0008
484
+ Step [6600/6957] - Training Loss: 0.0021 - Training MSE: 0.0008
485
+ Step [6700/6957] - Training Loss: 0.0014 - Training MSE: 0.0008
486
+ Step [6800/6957] - Training Loss: 0.0065 - Training MSE: 0.0008
487
+ Step [6900/6957] - Training Loss: 0.0080 - Training MSE: 0.0008
488
+ Epoch [6/20] - Training Loss: 0.0132, Training MSE: 0.0008 - Validation Loss: 0.4173, Validation MSE: 0.0261
489
+ Step [100/6957] - Training Loss: 0.0090 - Training MSE: 0.0009
490
+ Step [200/6957] - Training Loss: 0.0018 - Training MSE: 0.0007
491
+ Step [300/6957] - Training Loss: 0.0200 - Training MSE: 0.0008
492
+ Step [400/6957] - Training Loss: 0.0077 - Training MSE: 0.0007
493
+ Step [500/6957] - Training Loss: 0.0022 - Training MSE: 0.0008
494
+ Step [600/6957] - Training Loss: 0.0009 - Training MSE: 0.0007
495
+ Step [700/6957] - Training Loss: 0.0011 - Training MSE: 0.0007
496
+ Step [800/6957] - Training Loss: 0.0263 - Training MSE: 0.0007
497
+ Step [900/6957] - Training Loss: 0.1101 - Training MSE: 0.0009
498
+ Step [1000/6957] - Training Loss: 0.0844 - Training MSE: 0.0010
499
+ Step [1100/6957] - Training Loss: 0.0017 - Training MSE: 0.0010
500
+ Step [1200/6957] - Training Loss: 0.0028 - Training MSE: 0.0010
501
+ Step [1300/6957] - Training Loss: 0.0631 - Training MSE: 0.0009
502
+ Step [1400/6957] - Training Loss: 0.0028 - Training MSE: 0.0009
503
+ Step [1500/6957] - Training Loss: 0.0002 - Training MSE: 0.0009
504
+ Step [1600/6957] - Training Loss: 0.0004 - Training MSE: 0.0008
505
+ Step [1700/6957] - Training Loss: 0.0047 - Training MSE: 0.0008
506
+ Step [1800/6957] - Training Loss: 0.0010 - Training MSE: 0.0007
507
+ Step [1900/6957] - Training Loss: 0.0003 - Training MSE: 0.0007
508
+ Step [2000/6957] - Training Loss: 0.0042 - Training MSE: 0.0007
509
+ Step [2100/6957] - Training Loss: 0.0007 - Training MSE: 0.0007
510
+ Step [2200/6957] - Training Loss: 0.0023 - Training MSE: 0.0007
511
+ Step [2300/6957] - Training Loss: 0.0136 - Training MSE: 0.0007
512
+ Step [2400/6957] - Training Loss: 0.0018 - Training MSE: 0.0007
513
+ Step [2500/6957] - Training Loss: 0.0009 - Training MSE: 0.0006
514
+ Step [2600/6957] - Training Loss: 0.0740 - Training MSE: 0.0007
515
+ Step [2700/6957] - Training Loss: 0.0010 - Training MSE: 0.0007
516
+ Step [2800/6957] - Training Loss: 0.0463 - Training MSE: 0.0007
517
+ Step [2900/6957] - Training Loss: 0.0032 - Training MSE: 0.0007
518
+ Step [3000/6957] - Training Loss: 0.0006 - Training MSE: 0.0007
519
+ Step [3100/6957] - Training Loss: 0.0028 - Training MSE: 0.0007
520
+ Step [3200/6957] - Training Loss: 0.0003 - Training MSE: 0.0007
521
+ Step [3300/6957] - Training Loss: 0.0013 - Training MSE: 0.0007
522
+ Step [3400/6957] - Training Loss: 0.0424 - Training MSE: 0.0007
523
+ Step [3500/6957] - Training Loss: 0.0009 - Training MSE: 0.0007
524
+ Step [3600/6957] - Training Loss: 0.0057 - Training MSE: 0.0007
525
+ Step [3700/6957] - Training Loss: 0.0007 - Training MSE: 0.0007
526
+ Step [3800/6957] - Training Loss: 0.0544 - Training MSE: 0.0007
527
+ Step [3900/6957] - Training Loss: 0.0161 - Training MSE: 0.0007
528
+ Step [4000/6957] - Training Loss: 0.0615 - Training MSE: 0.0007
529
+ Step [4100/6957] - Training Loss: 0.0008 - Training MSE: 0.0007
530
+ Step [4200/6957] - Training Loss: 0.0022 - Training MSE: 0.0007
531
+ Step [4300/6957] - Training Loss: 0.0055 - Training MSE: 0.0007
532
+ Step [4400/6957] - Training Loss: 0.0228 - Training MSE: 0.0007
533
+ Step [4500/6957] - Training Loss: 0.0571 - Training MSE: 0.0007
534
+ Step [4600/6957] - Training Loss: 0.0026 - Training MSE: 0.0007
535
+ Step [4700/6957] - Training Loss: 0.0044 - Training MSE: 0.0007
536
+ Step [4800/6957] - Training Loss: 0.0009 - Training MSE: 0.0007
537
+ Step [4900/6957] - Training Loss: 0.0020 - Training MSE: 0.0007
538
+ Step [5000/6957] - Training Loss: 0.0018 - Training MSE: 0.0007
539
+ Step [5100/6957] - Training Loss: 0.0020 - Training MSE: 0.0007
540
+ Step [5200/6957] - Training Loss: 0.0007 - Training MSE: 0.0007
541
+ Step [5300/6957] - Training Loss: 0.0001 - Training MSE: 0.0006
542
+ Step [5400/6957] - Training Loss: 0.0012 - Training MSE: 0.0006
543
+ Step [5500/6957] - Training Loss: 0.0013 - Training MSE: 0.0006
544
+ Step [5600/6957] - Training Loss: 0.0010 - Training MSE: 0.0006
545
+ Step [5700/6957] - Training Loss: 0.0008 - Training MSE: 0.0006
546
+ Step [5800/6957] - Training Loss: 0.0019 - Training MSE: 0.0006
547
+ Step [5900/6957] - Training Loss: 0.0006 - Training MSE: 0.0006
548
+ Step [6000/6957] - Training Loss: 0.0183 - Training MSE: 0.0006
549
+ Step [6100/6957] - Training Loss: 0.0039 - Training MSE: 0.0006
550
+ Step [6200/6957] - Training Loss: 0.0068 - Training MSE: 0.0007
551
+ Step [6300/6957] - Training Loss: 0.0008 - Training MSE: 0.0006
552
+ Step [6400/6957] - Training Loss: 0.0013 - Training MSE: 0.0006
553
+ Step [6500/6957] - Training Loss: 0.0005 - Training MSE: 0.0006
554
+ Step [6600/6957] - Training Loss: 0.0011 - Training MSE: 0.0006
555
+ Step [6700/6957] - Training Loss: 0.0007 - Training MSE: 0.0006
556
+ Step [6800/6957] - Training Loss: 0.0233 - Training MSE: 0.0006
557
+ Step [6900/6957] - Training Loss: 0.0003 - Training MSE: 0.0006
558
+ Epoch [7/20] - Training Loss: 0.0099, Training MSE: 0.0006 - Validation Loss: 0.4181, Validation MSE: 0.0261
559
+ Step [100/6957] - Training Loss: 0.0006 - Training MSE: 0.0001
560
+ Step [200/6957] - Training Loss: 0.0176 - Training MSE: 0.0003
561
+ Step [300/6957] - Training Loss: 0.0064 - Training MSE: 0.0005
562
+ Step [400/6957] - Training Loss: 0.0118 - Training MSE: 0.0007
563
+ Step [500/6957] - Training Loss: 0.0097 - Training MSE: 0.0008
564
+ Step [600/6957] - Training Loss: 0.0232 - Training MSE: 0.0008
565
+ Step [700/6957] - Training Loss: 0.0042 - Training MSE: 0.0008
566
+ Step [800/6957] - Training Loss: 0.0052 - Training MSE: 0.0008
567
+ Step [900/6957] - Training Loss: 0.0006 - Training MSE: 0.0007
568
+ Step [1000/6957] - Training Loss: 0.0091 - Training MSE: 0.0007
569
+ Step [1100/6957] - Training Loss: 0.0007 - Training MSE: 0.0007
570
+ Step [1200/6957] - Training Loss: 0.0022 - Training MSE: 0.0007
571
+ Step [1300/6957] - Training Loss: 0.0080 - Training MSE: 0.0007
572
+ Step [1400/6957] - Training Loss: 0.0019 - Training MSE: 0.0007
573
+ Step [1500/6957] - Training Loss: 0.0040 - Training MSE: 0.0007
574
+ Step [1600/6957] - Training Loss: 0.1144 - Training MSE: 0.0007
575
+ Step [1700/6957] - Training Loss: 0.0018 - Training MSE: 0.0007
576
+ Step [1800/6957] - Training Loss: 0.0035 - Training MSE: 0.0007
577
+ Step [1900/6957] - Training Loss: 0.0012 - Training MSE: 0.0007
578
+ Step [2000/6957] - Training Loss: 0.0017 - Training MSE: 0.0007
579
+ Step [2100/6957] - Training Loss: 0.0026 - Training MSE: 0.0007
580
+ Step [2200/6957] - Training Loss: 0.0009 - Training MSE: 0.0007
581
+ Step [2300/6957] - Training Loss: 0.0008 - Training MSE: 0.0006
582
+ Step [2400/6957] - Training Loss: 0.0004 - Training MSE: 0.0006
583
+ Step [2500/6957] - Training Loss: 0.0014 - Training MSE: 0.0006
584
+ Step [2600/6957] - Training Loss: 0.0021 - Training MSE: 0.0006
585
+ Step [2700/6957] - Training Loss: 0.0010 - Training MSE: 0.0006
586
+ Step [2800/6957] - Training Loss: 0.0189 - Training MSE: 0.0006
587
+ Step [2900/6957] - Training Loss: 0.0054 - Training MSE: 0.0006
588
+ Step [3000/6957] - Training Loss: 0.0007 - Training MSE: 0.0006
589
+ Step [3100/6957] - Training Loss: 0.0018 - Training MSE: 0.0005
590
+ Step [3200/6957] - Training Loss: 0.0009 - Training MSE: 0.0005
591
+ Step [3300/6957] - Training Loss: 0.0005 - Training MSE: 0.0005
592
+ Step [3400/6957] - Training Loss: 0.0006 - Training MSE: 0.0005
593
+ Step [3500/6957] - Training Loss: 0.0288 - Training MSE: 0.0005
594
+ Step [3600/6957] - Training Loss: 0.0011 - Training MSE: 0.0005
595
+ Step [3700/6957] - Training Loss: 0.0032 - Training MSE: 0.0005
596
+ Step [3800/6957] - Training Loss: 0.0194 - Training MSE: 0.0005
597
+ Step [3900/6957] - Training Loss: 0.0020 - Training MSE: 0.0005
598
+ Step [4000/6957] - Training Loss: 0.0042 - Training MSE: 0.0006
599
+ Step [4100/6957] - Training Loss: 0.0014 - Training MSE: 0.0006
600
+ Step [4200/6957] - Training Loss: 0.0225 - Training MSE: 0.0006
601
+ Step [4300/6957] - Training Loss: 0.0025 - Training MSE: 0.0006
602
+ Step [4400/6957] - Training Loss: 0.0004 - Training MSE: 0.0006
603
+ Step [4500/6957] - Training Loss: 0.0003 - Training MSE: 0.0006
604
+ Step [4600/6957] - Training Loss: 0.0008 - Training MSE: 0.0006
605
+ Step [4700/6957] - Training Loss: 0.0004 - Training MSE: 0.0006
606
+ Step [4800/6957] - Training Loss: 0.0012 - Training MSE: 0.0006
607
+ Step [4900/6957] - Training Loss: 0.0006 - Training MSE: 0.0005
608
+ Step [5000/6957] - Training Loss: 0.0028 - Training MSE: 0.0005
609
+ Step [5100/6957] - Training Loss: 0.0076 - Training MSE: 0.0005
610
+ Step [5200/6957] - Training Loss: 0.0012 - Training MSE: 0.0005
611
+ Step [5300/6957] - Training Loss: 0.0009 - Training MSE: 0.0005
612
+ Step [5400/6957] - Training Loss: 0.0023 - Training MSE: 0.0005
613
+ Step [5500/6957] - Training Loss: 0.0082 - Training MSE: 0.0005
614
+ Step [5600/6957] - Training Loss: 0.0004 - Training MSE: 0.0005
615
+ Step [5700/6957] - Training Loss: 0.0004 - Training MSE: 0.0005
616
+ Step [5800/6957] - Training Loss: 0.0015 - Training MSE: 0.0005
617
+ Step [5900/6957] - Training Loss: 0.0004 - Training MSE: 0.0005
618
+ Step [6000/6957] - Training Loss: 0.0010 - Training MSE: 0.0005
619
+ Step [6100/6957] - Training Loss: 0.0036 - Training MSE: 0.0005
620
+ Step [6200/6957] - Training Loss: 0.0045 - Training MSE: 0.0005
621
+ Step [6300/6957] - Training Loss: 0.0175 - Training MSE: 0.0005
622
+ Step [6400/6957] - Training Loss: 0.0007 - Training MSE: 0.0005
623
+ Step [6500/6957] - Training Loss: 0.0359 - Training MSE: 0.0005
624
+ Step [6600/6957] - Training Loss: 0.0230 - Training MSE: 0.0005
625
+ Step [6700/6957] - Training Loss: 0.0022 - Training MSE: 0.0005
626
+ Step [6800/6957] - Training Loss: 0.0004 - Training MSE: 0.0005
627
+ Step [6900/6957] - Training Loss: 0.0012 - Training MSE: 0.0005
628
+ Epoch [8/20] - Training Loss: 0.0084, Training MSE: 0.0005 - Validation Loss: 0.4067, Validation MSE: 0.0254
629
+ Step [100/6957] - Training Loss: 0.0005 - Training MSE: 0.0001
630
+ Step [200/6957] - Training Loss: 0.0091 - Training MSE: 0.0002
631
+ Step [300/6957] - Training Loss: 0.0018 - Training MSE: 0.0002
632
+ Step [400/6957] - Training Loss: 0.0004 - Training MSE: 0.0002
633
+ Step [500/6957] - Training Loss: 0.0002 - Training MSE: 0.0002
634
+ Step [600/6957] - Training Loss: 0.0004 - Training MSE: 0.0001
635
+ Step [700/6957] - Training Loss: 0.0005 - Training MSE: 0.0001
636
+ Step [800/6957] - Training Loss: 0.0003 - Training MSE: 0.0001
637
+ Step [900/6957] - Training Loss: 0.0735 - Training MSE: 0.0002
638
+ Step [1000/6957] - Training Loss: 0.0010 - Training MSE: 0.0003
639
+ Step [1100/6957] - Training Loss: 0.0008 - Training MSE: 0.0003
640
+ Step [1200/6957] - Training Loss: 0.0019 - Training MSE: 0.0003
641
+ Step [1300/6957] - Training Loss: 0.0013 - Training MSE: 0.0003
642
+ Step [1400/6957] - Training Loss: 0.0046 - Training MSE: 0.0003
643
+ Step [1500/6957] - Training Loss: 0.0089 - Training MSE: 0.0004
644
+ Step [1600/6957] - Training Loss: 0.0010 - Training MSE: 0.0004
645
+ Step [1700/6957] - Training Loss: 0.0053 - Training MSE: 0.0004
646
+ Step [1800/6957] - Training Loss: 0.0005 - Training MSE: 0.0004
647
+ Step [1900/6957] - Training Loss: 0.0013 - Training MSE: 0.0004
648
+ Step [2000/6957] - Training Loss: 0.0040 - Training MSE: 0.0004
649
+ Step [2100/6957] - Training Loss: 0.0008 - Training MSE: 0.0003
650
+ Step [2200/6957] - Training Loss: 0.0002 - Training MSE: 0.0003
651
+ Step [2300/6957] - Training Loss: 0.0003 - Training MSE: 0.0003
652
+ Step [2400/6957] - Training Loss: 0.0002 - Training MSE: 0.0003
653
+ Step [2500/6957] - Training Loss: 0.0023 - Training MSE: 0.0003
654
+ Step [2600/6957] - Training Loss: 0.0079 - Training MSE: 0.0004
655
+ Step [2700/6957] - Training Loss: 0.0020 - Training MSE: 0.0004
656
+ Step [2800/6957] - Training Loss: 0.0009 - Training MSE: 0.0004
657
+ Step [2900/6957] - Training Loss: 0.0013 - Training MSE: 0.0004
658
+ Step [3000/6957] - Training Loss: 0.0011 - Training MSE: 0.0004
659
+ Step [3100/6957] - Training Loss: 0.0526 - Training MSE: 0.0004
660
+ Step [3200/6957] - Training Loss: 0.0006 - Training MSE: 0.0004
661
+ Step [3300/6957] - Training Loss: 0.0004 - Training MSE: 0.0004
662
+ Step [3400/6957] - Training Loss: 0.0576 - Training MSE: 0.0004
663
+ Step [3500/6957] - Training Loss: 0.0003 - Training MSE: 0.0004
664
+ Step [3600/6957] - Training Loss: 0.0003 - Training MSE: 0.0004
665
+ Step [3700/6957] - Training Loss: 0.0006 - Training MSE: 0.0004
666
+ Step [3800/6957] - Training Loss: 0.0009 - Training MSE: 0.0004
667
+ Step [3900/6957] - Training Loss: 0.0002 - Training MSE: 0.0004
668
+ Step [4000/6957] - Training Loss: 0.0004 - Training MSE: 0.0004
669
+ Step [4100/6957] - Training Loss: 0.0004 - Training MSE: 0.0004
670
+ Step [4200/6957] - Training Loss: 0.0020 - Training MSE: 0.0004
671
+ Step [4300/6957] - Training Loss: 0.0016 - Training MSE: 0.0004
672
+ Step [4400/6957] - Training Loss: 0.0005 - Training MSE: 0.0004
673
+ Step [4500/6957] - Training Loss: 0.0009 - Training MSE: 0.0004
674
+ Step [4600/6957] - Training Loss: 0.0072 - Training MSE: 0.0004
675
+ Step [4700/6957] - Training Loss: 0.0015 - Training MSE: 0.0004
676
+ Step [4800/6957] - Training Loss: 0.0009 - Training MSE: 0.0004
677
+ Step [4900/6957] - Training Loss: 0.0069 - Training MSE: 0.0004
678
+ Step [5000/6957] - Training Loss: 0.0010 - Training MSE: 0.0004
679
+ Step [5100/6957] - Training Loss: 0.0023 - Training MSE: 0.0004
680
+ Step [5200/6957] - Training Loss: 0.0026 - Training MSE: 0.0004
681
+ Step [5300/6957] - Training Loss: 0.0006 - Training MSE: 0.0004
682
+ Step [5400/6957] - Training Loss: 0.0429 - Training MSE: 0.0004
683
+ Step [5500/6957] - Training Loss: 0.0003 - Training MSE: 0.0004
684
+ Step [5600/6957] - Training Loss: 0.0002 - Training MSE: 0.0004
685
+ Step [5700/6957] - Training Loss: 0.0005 - Training MSE: 0.0003
686
+ Step [5800/6957] - Training Loss: 0.0007 - Training MSE: 0.0003
687
+ Step [5900/6957] - Training Loss: 0.0009 - Training MSE: 0.0003
688
+ Step [6000/6957] - Training Loss: 0.0008 - Training MSE: 0.0003
689
+ Step [6100/6957] - Training Loss: 0.0036 - Training MSE: 0.0003
690
+ Step [6200/6957] - Training Loss: 0.0057 - Training MSE: 0.0003
691
+ Step [6300/6957] - Training Loss: 0.0146 - Training MSE: 0.0003
692
+ Step [6400/6957] - Training Loss: 0.0012 - Training MSE: 0.0003
693
+ Step [6500/6957] - Training Loss: 0.0022 - Training MSE: 0.0003
694
+ Step [6600/6957] - Training Loss: 0.0012 - Training MSE: 0.0003
695
+ Step [6700/6957] - Training Loss: 0.0012 - Training MSE: 0.0003
696
+ Step [6800/6957] - Training Loss: 0.0008 - Training MSE: 0.0003
697
+ Step [6900/6957] - Training Loss: 0.0084 - Training MSE: 0.0003
698
+ Epoch [9/20] - Training Loss: 0.0056, Training MSE: 0.0003 - Validation Loss: 0.3878, Validation MSE: 0.0242
699
+ Step [100/6957] - Training Loss: 0.0005 - Training MSE: 0.0001
700
+ Step [200/6957] - Training Loss: 0.0003 - Training MSE: 0.0001
701
+ Step [300/6957] - Training Loss: 0.0007 - Training MSE: 0.0002
702
+ Step [400/6957] - Training Loss: 0.0014 - Training MSE: 0.0002
703
+ Step [500/6957] - Training Loss: 0.0012 - Training MSE: 0.0002
704
+ Step [600/6957] - Training Loss: 0.0127 - Training MSE: 0.0002
705
+ Step [700/6957] - Training Loss: 0.0010 - Training MSE: 0.0002
706
+ Step [800/6957] - Training Loss: 0.0006 - Training MSE: 0.0002
707
+ Step [900/6957] - Training Loss: 0.0007 - Training MSE: 0.0002
708
+ Step [1000/6957] - Training Loss: 0.0013 - Training MSE: 0.0002
709
+ Step [1100/6957] - Training Loss: 0.0009 - Training MSE: 0.0002
710
+ Step [1200/6957] - Training Loss: 0.0011 - Training MSE: 0.0002
711
+ Step [1300/6957] - Training Loss: 0.0020 - Training MSE: 0.0002
712
+ Step [1400/6957] - Training Loss: 0.0016 - Training MSE: 0.0002
713
+ Step [1500/6957] - Training Loss: 0.0007 - Training MSE: 0.0002
714
+ Step [1600/6957] - Training Loss: 0.0011 - Training MSE: 0.0002
715
+ Step [1700/6957] - Training Loss: 0.0019 - Training MSE: 0.0002
716
+ Step [1800/6957] - Training Loss: 0.0010 - Training MSE: 0.0002
717
+ Step [1900/6957] - Training Loss: 0.0015 - Training MSE: 0.0002
718
+ Step [2000/6957] - Training Loss: 0.0002 - Training MSE: 0.0002
719
+ Step [2100/6957] - Training Loss: 0.0006 - Training MSE: 0.0002
720
+ Step [2200/6957] - Training Loss: 0.0373 - Training MSE: 0.0002
721
+ Step [2300/6957] - Training Loss: 0.0008 - Training MSE: 0.0002
722
+ Step [2400/6957] - Training Loss: 0.0281 - Training MSE: 0.0003
723
+ Step [2500/6957] - Training Loss: 0.0002 - Training MSE: 0.0003
724
+ Step [2600/6957] - Training Loss: 0.0036 - Training MSE: 0.0003
725
+ Step [2700/6957] - Training Loss: 0.0058 - Training MSE: 0.0003
726
+ Step [2800/6957] - Training Loss: 0.0010 - Training MSE: 0.0003
727
+ Step [2900/6957] - Training Loss: 0.0014 - Training MSE: 0.0003
728
+ Step [3000/6957] - Training Loss: 0.0018 - Training MSE: 0.0003
729
+ Step [3100/6957] - Training Loss: 0.0008 - Training MSE: 0.0003
730
+ Step [3200/6957] - Training Loss: 0.0027 - Training MSE: 0.0003
731
+ Step [3300/6957] - Training Loss: 0.0042 - Training MSE: 0.0003
732
+ Step [3400/6957] - Training Loss: 0.0020 - Training MSE: 0.0003
733
+ Step [3500/6957] - Training Loss: 0.0004 - Training MSE: 0.0003
734
+ Step [3600/6957] - Training Loss: 0.0005 - Training MSE: 0.0003
735
+ Step [3700/6957] - Training Loss: 0.0004 - Training MSE: 0.0003
736
+ Step [3800/6957] - Training Loss: 0.0006 - Training MSE: 0.0003
737
+ Step [3900/6957] - Training Loss: 0.0004 - Training MSE: 0.0003
738
+ Step [4000/6957] - Training Loss: 0.0003 - Training MSE: 0.0003
739
+ Step [4100/6957] - Training Loss: 0.0005 - Training MSE: 0.0003
740
+ Step [4200/6957] - Training Loss: 0.0004 - Training MSE: 0.0003
741
+ Step [4300/6957] - Training Loss: 0.0001 - Training MSE: 0.0003
742
+ Step [4400/6957] - Training Loss: 0.0001 - Training MSE: 0.0003
743
+ Step [4500/6957] - Training Loss: 0.0002 - Training MSE: 0.0003
744
+ Step [4600/6957] - Training Loss: 0.0011 - Training MSE: 0.0003
745
+ Step [4700/6957] - Training Loss: 0.0007 - Training MSE: 0.0003
746
+ Step [4800/6957] - Training Loss: 0.0002 - Training MSE: 0.0003
747
+ Step [4900/6957] - Training Loss: 0.0073 - Training MSE: 0.0003
748
+ Step [5000/6957] - Training Loss: 0.0017 - Training MSE: 0.0003
749
+ Step [5100/6957] - Training Loss: 0.0002 - Training MSE: 0.0003
750
+ Step [5200/6957] - Training Loss: 0.0035 - Training MSE: 0.0003
751
+ Step [5300/6957] - Training Loss: 0.0003 - Training MSE: 0.0003
752
+ Step [5400/6957] - Training Loss: 0.0013 - Training MSE: 0.0003
753
+ Step [5500/6957] - Training Loss: 0.0004 - Training MSE: 0.0003
754
+ Step [5600/6957] - Training Loss: 0.0131 - Training MSE: 0.0003
755
+ Step [5700/6957] - Training Loss: 0.0004 - Training MSE: 0.0003
756
+ Step [5800/6957] - Training Loss: 0.0015 - Training MSE: 0.0003
757
+ Step [5900/6957] - Training Loss: 0.0001 - Training MSE: 0.0003
758
+ Step [6000/6957] - Training Loss: 0.0008 - Training MSE: 0.0003
759
+ Step [6100/6957] - Training Loss: 0.0243 - Training MSE: 0.0003
760
+ Step [6200/6957] - Training Loss: 0.0030 - Training MSE: 0.0003
761
+ Step [6300/6957] - Training Loss: 0.0004 - Training MSE: 0.0003
762
+ Step [6400/6957] - Training Loss: 0.0007 - Training MSE: 0.0003
763
+ Step [6500/6957] - Training Loss: 0.0003 - Training MSE: 0.0003
764
+ Step [6600/6957] - Training Loss: 0.0004 - Training MSE: 0.0003
765
+ Step [6700/6957] - Training Loss: 0.0006 - Training MSE: 0.0003
766
+ Step [6800/6957] - Training Loss: 0.0014 - Training MSE: 0.0003
767
+ Step [6900/6957] - Training Loss: 0.0005 - Training MSE: 0.0003
768
+ Epoch [10/20] - Training Loss: 0.0043, Training MSE: 0.0003 - Validation Loss: 0.3933, Validation MSE: 0.0246
769
+ Step [100/6957] - Training Loss: 0.0002 - Training MSE: 0.0002
770
+ Step [200/6957] - Training Loss: 0.0020 - Training MSE: 0.0002
771
+ Step [300/6957] - Training Loss: 0.0011 - Training MSE: 0.0002
772
+ Step [400/6957] - Training Loss: 0.0005 - Training MSE: 0.0002
773
+ Step [500/6957] - Training Loss: 0.0008 - Training MSE: 0.0002
774
+ Step [600/6957] - Training Loss: 0.0004 - Training MSE: 0.0002
775
+ Step [700/6957] - Training Loss: 0.0025 - Training MSE: 0.0002
776
+ Step [800/6957] - Training Loss: 0.0004 - Training MSE: 0.0002
777
+ Step [900/6957] - Training Loss: 0.0002 - Training MSE: 0.0002
778
+ Step [1000/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
779
+ Step [1100/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
780
+ Step [1200/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
781
+ Step [1300/6957] - Training Loss: 0.0028 - Training MSE: 0.0002
782
+ Step [1400/6957] - Training Loss: 0.0007 - Training MSE: 0.0002
783
+ Step [1500/6957] - Training Loss: 0.0157 - Training MSE: 0.0002
784
+ Step [1600/6957] - Training Loss: 0.0002 - Training MSE: 0.0002
785
+ Step [1700/6957] - Training Loss: 0.0012 - Training MSE: 0.0002
786
+ Step [1800/6957] - Training Loss: 0.0003 - Training MSE: 0.0002
787
+ Step [1900/6957] - Training Loss: 0.0001 - Training MSE: 0.0002
788
+ Step [2000/6957] - Training Loss: 0.0002 - Training MSE: 0.0002
789
+ Step [2100/6957] - Training Loss: 0.0002 - Training MSE: 0.0002
790
+ Step [2200/6957] - Training Loss: 0.0002 - Training MSE: 0.0002
791
+ Step [2300/6957] - Training Loss: 0.0016 - Training MSE: 0.0002
792
+ Step [2400/6957] - Training Loss: 0.0276 - Training MSE: 0.0002
793
+ Step [2500/6957] - Training Loss: 0.0016 - Training MSE: 0.0002
794
+ Step [2600/6957] - Training Loss: 0.0012 - Training MSE: 0.0002
795
+ Step [2700/6957] - Training Loss: 0.0003 - Training MSE: 0.0002
796
+ Step [2800/6957] - Training Loss: 0.0002 - Training MSE: 0.0002
797
+ Step [2900/6957] - Training Loss: 0.0003 - Training MSE: 0.0002
798
+ Step [3000/6957] - Training Loss: 0.0017 - Training MSE: 0.0002
799
+ Step [3100/6957] - Training Loss: 0.0003 - Training MSE: 0.0002
800
+ Step [3200/6957] - Training Loss: 0.0003 - Training MSE: 0.0002
801
+ Step [3300/6957] - Training Loss: 0.0006 - Training MSE: 0.0002
802
+ Step [3400/6957] - Training Loss: 0.0006 - Training MSE: 0.0002
803
+ Step [3500/6957] - Training Loss: 0.0002 - Training MSE: 0.0002
804
+ Step [3600/6957] - Training Loss: 0.0006 - Training MSE: 0.0002
805
+ Step [3700/6957] - Training Loss: 0.0075 - Training MSE: 0.0002
806
+ Step [3800/6957] - Training Loss: 0.0003 - Training MSE: 0.0002
807
+ Step [3900/6957] - Training Loss: 0.0008 - Training MSE: 0.0002
808
+ Step [4000/6957] - Training Loss: 0.0006 - Training MSE: 0.0002
809
+ Step [4100/6957] - Training Loss: 0.0001 - Training MSE: 0.0002
810
+ Step [4200/6957] - Training Loss: 0.0024 - Training MSE: 0.0002
811
+ Step [4300/6957] - Training Loss: 0.0006 - Training MSE: 0.0002
812
+ Step [4400/6957] - Training Loss: 0.0020 - Training MSE: 0.0002
813
+ Step [4500/6957] - Training Loss: 0.0002 - Training MSE: 0.0002
814
+ Step [4600/6957] - Training Loss: 0.0001 - Training MSE: 0.0002
815
+ Step [4700/6957] - Training Loss: 0.0020 - Training MSE: 0.0002
816
+ Step [4800/6957] - Training Loss: 0.0002 - Training MSE: 0.0002
817
+ Step [4900/6957] - Training Loss: 0.0012 - Training MSE: 0.0002
818
+ Step [5000/6957] - Training Loss: 0.0017 - Training MSE: 0.0002
819
+ Step [5100/6957] - Training Loss: 0.0010 - Training MSE: 0.0002
820
+ Step [5200/6957] - Training Loss: 0.0004 - Training MSE: 0.0002
821
+ Step [5300/6957] - Training Loss: 0.0006 - Training MSE: 0.0002
822
+ Step [5400/6957] - Training Loss: 0.0003 - Training MSE: 0.0002
823
+ Step [5500/6957] - Training Loss: 0.0005 - Training MSE: 0.0002
824
+ Step [5600/6957] - Training Loss: 0.0012 - Training MSE: 0.0002
825
+ Step [5700/6957] - Training Loss: 0.0008 - Training MSE: 0.0002
826
+ Step [5800/6957] - Training Loss: 0.0003 - Training MSE: 0.0002
827
+ Step [5900/6957] - Training Loss: 0.0001 - Training MSE: 0.0002
828
+ Step [6000/6957] - Training Loss: 0.0007 - Training MSE: 0.0002
829
+ Step [6100/6957] - Training Loss: 0.0003 - Training MSE: 0.0002
830
+ Step [6200/6957] - Training Loss: 0.0036 - Training MSE: 0.0002
831
+ Step [6300/6957] - Training Loss: 0.0002 - Training MSE: 0.0002
832
+ Step [6400/6957] - Training Loss: 0.0013 - Training MSE: 0.0002
833
+ Step [6500/6957] - Training Loss: 0.0220 - Training MSE: 0.0002
834
+ Step [6600/6957] - Training Loss: 0.0001 - Training MSE: 0.0002
835
+ Step [6700/6957] - Training Loss: 0.0301 - Training MSE: 0.0002
836
+ Step [6800/6957] - Training Loss: 0.0064 - Training MSE: 0.0002
837
+ Step [6900/6957] - Training Loss: 0.0029 - Training MSE: 0.0002
838
+ Epoch [11/20] - Training Loss: 0.0028, Training MSE: 0.0002 - Validation Loss: 0.3914, Validation MSE: 0.0245
839
+ Step [100/6957] - Training Loss: 0.0132 - Training MSE: 0.0003
840
+ Step [200/6957] - Training Loss: 0.0018 - Training MSE: 0.0002
841
+ Step [300/6957] - Training Loss: 0.0014 - Training MSE: 0.0003
842
+ Step [400/6957] - Training Loss: 0.0011 - Training MSE: 0.0003
843
+ Step [500/6957] - Training Loss: 0.0011 - Training MSE: 0.0002
844
+ Step [600/6957] - Training Loss: 0.0002 - Training MSE: 0.0002
845
+ Step [700/6957] - Training Loss: 0.0005 - Training MSE: 0.0002
846
+ Step [800/6957] - Training Loss: 0.0014 - Training MSE: 0.0002
847
+ Step [900/6957] - Training Loss: 0.0004 - Training MSE: 0.0002
848
+ Step [1000/6957] - Training Loss: 0.0001 - Training MSE: 0.0002
849
+ Step [1100/6957] - Training Loss: 0.0000 - Training MSE: 0.0002
850
+ Step [1200/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
851
+ Step [1300/6957] - Training Loss: 0.0003 - Training MSE: 0.0001
852
+ Step [1400/6957] - Training Loss: 0.0009 - Training MSE: 0.0001
853
+ Step [1500/6957] - Training Loss: 0.0009 - Training MSE: 0.0001
854
+ Step [1600/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
855
+ Step [1700/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
856
+ Step [1800/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
857
+ Step [1900/6957] - Training Loss: 0.0005 - Training MSE: 0.0001
858
+ Step [2000/6957] - Training Loss: 0.0011 - Training MSE: 0.0001
859
+ Step [2100/6957] - Training Loss: 0.0401 - Training MSE: 0.0002
860
+ Step [2200/6957] - Training Loss: 0.0005 - Training MSE: 0.0002
861
+ Step [2300/6957] - Training Loss: 0.0164 - Training MSE: 0.0002
862
+ Step [2400/6957] - Training Loss: 0.0002 - Training MSE: 0.0002
863
+ Step [2500/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
864
+ Step [2600/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
865
+ Step [2700/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
866
+ Step [2800/6957] - Training Loss: 0.0003 - Training MSE: 0.0001
867
+ Step [2900/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
868
+ Step [3000/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
869
+ Step [3100/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
870
+ Step [3200/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
871
+ Step [3300/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
872
+ Step [3400/6957] - Training Loss: 0.0004 - Training MSE: 0.0001
873
+ Step [3500/6957] - Training Loss: 0.0003 - Training MSE: 0.0001
874
+ Step [3600/6957] - Training Loss: 0.0004 - Training MSE: 0.0001
875
+ Step [3700/6957] - Training Loss: 0.0006 - Training MSE: 0.0001
876
+ Step [3800/6957] - Training Loss: 0.0008 - Training MSE: 0.0001
877
+ Step [3900/6957] - Training Loss: 0.0011 - Training MSE: 0.0001
878
+ Step [4000/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
879
+ Step [4100/6957] - Training Loss: 0.0003 - Training MSE: 0.0001
880
+ Step [4200/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
881
+ Step [4300/6957] - Training Loss: 0.0009 - Training MSE: 0.0001
882
+ Step [4400/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
883
+ Step [4500/6957] - Training Loss: 0.0003 - Training MSE: 0.0001
884
+ Step [4600/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
885
+ Step [4700/6957] - Training Loss: 0.0008 - Training MSE: 0.0001
886
+ Step [4800/6957] - Training Loss: 0.0005 - Training MSE: 0.0001
887
+ Step [4900/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
888
+ Step [5000/6957] - Training Loss: 0.0003 - Training MSE: 0.0001
889
+ Step [5100/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
890
+ Step [5200/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
891
+ Step [5300/6957] - Training Loss: 0.0006 - Training MSE: 0.0001
892
+ Step [5400/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
893
+ Step [5500/6957] - Training Loss: 0.0003 - Training MSE: 0.0001
894
+ Step [5600/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
895
+ Step [5700/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
896
+ Step [5800/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
897
+ Step [5900/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
898
+ Step [6000/6957] - Training Loss: 0.0014 - Training MSE: 0.0001
899
+ Step [6100/6957] - Training Loss: 0.0003 - Training MSE: 0.0001
900
+ Step [6200/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
901
+ Step [6300/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
902
+ Step [6400/6957] - Training Loss: 0.0003 - Training MSE: 0.0001
903
+ Step [6500/6957] - Training Loss: 0.0009 - Training MSE: 0.0001
904
+ Step [6600/6957] - Training Loss: 0.0006 - Training MSE: 0.0001
905
+ Step [6700/6957] - Training Loss: 0.0003 - Training MSE: 0.0001
906
+ Step [6800/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
907
+ Step [6900/6957] - Training Loss: 0.0004 - Training MSE: 0.0001
908
+ Epoch [12/20] - Training Loss: 0.0017, Training MSE: 0.0001 - Validation Loss: 0.4000, Validation MSE: 0.0250
909
+ Step [100/6957] - Training Loss: 0.0005 - Training MSE: 0.0001
910
+ Step [200/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
911
+ Step [300/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
912
+ Step [400/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
913
+ Step [500/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
914
+ Step [600/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
915
+ Step [700/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
916
+ Step [800/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
917
+ Step [900/6957] - Training Loss: 0.0008 - Training MSE: 0.0001
918
+ Step [1000/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
919
+ Step [1100/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
920
+ Step [1200/6957] - Training Loss: 0.0004 - Training MSE: 0.0001
921
+ Step [1300/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
922
+ Step [1400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
923
+ Step [1500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
924
+ Step [1600/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
925
+ Step [1700/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
926
+ Step [1800/6957] - Training Loss: 0.0002 - Training MSE: 0.0000
927
+ Step [1900/6957] - Training Loss: 0.0020 - Training MSE: 0.0001
928
+ Step [2000/6957] - Training Loss: 0.0003 - Training MSE: 0.0001
929
+ Step [2100/6957] - Training Loss: 0.0005 - Training MSE: 0.0001
930
+ Step [2200/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
931
+ Step [2300/6957] - Training Loss: 0.0605 - Training MSE: 0.0001
932
+ Step [2400/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
933
+ Step [2500/6957] - Training Loss: 0.0010 - Training MSE: 0.0001
934
+ Step [2600/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
935
+ Step [2700/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
936
+ Step [2800/6957] - Training Loss: 0.0008 - Training MSE: 0.0001
937
+ Step [2900/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
938
+ Step [3000/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
939
+ Step [3100/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
940
+ Step [3200/6957] - Training Loss: 0.0147 - Training MSE: 0.0001
941
+ Step [3300/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
942
+ Step [3400/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
943
+ Step [3500/6957] - Training Loss: 0.0039 - Training MSE: 0.0001
944
+ Step [3600/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
945
+ Step [3700/6957] - Training Loss: 0.0004 - Training MSE: 0.0001
946
+ Step [3800/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
947
+ Step [3900/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
948
+ Step [4000/6957] - Training Loss: 0.0003 - Training MSE: 0.0001
949
+ Step [4100/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
950
+ Step [4200/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
951
+ Step [4300/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
952
+ Step [4400/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
953
+ Step [4500/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
954
+ Step [4600/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
955
+ Step [4700/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
956
+ Step [4800/6957] - Training Loss: 0.0000 - Training MSE: 0.0001
957
+ Step [4900/6957] - Training Loss: 0.0007 - Training MSE: 0.0001
958
+ Step [5000/6957] - Training Loss: 0.0018 - Training MSE: 0.0001
959
+ Step [5100/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
960
+ Step [5200/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
961
+ Step [5300/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
962
+ Step [5400/6957] - Training Loss: 0.0005 - Training MSE: 0.0001
963
+ Step [5500/6957] - Training Loss: 0.0006 - Training MSE: 0.0001
964
+ Step [5600/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
965
+ Step [5700/6957] - Training Loss: 0.0004 - Training MSE: 0.0001
966
+ Step [5800/6957] - Training Loss: 0.0002 - Training MSE: 0.0001
967
+ Step [5900/6957] - Training Loss: 0.0018 - Training MSE: 0.0001
968
+ Step [6000/6957] - Training Loss: 0.0051 - Training MSE: 0.0001
969
+ Step [6100/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
970
+ Step [6200/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
971
+ Step [6300/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
972
+ Step [6400/6957] - Training Loss: 0.0000 - Training MSE: 0.0001
973
+ Step [6500/6957] - Training Loss: 0.0000 - Training MSE: 0.0001
974
+ Step [6600/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
975
+ Step [6700/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
976
+ Step [6800/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
977
+ Step [6900/6957] - Training Loss: 0.0000 - Training MSE: 0.0001
978
+ Epoch [13/20] - Training Loss: 0.0011, Training MSE: 0.0001 - Validation Loss: 0.3817, Validation MSE: 0.0239
979
+ Step [100/6957] - Training Loss: 0.0003 - Training MSE: 0.0001
980
+ Step [200/6957] - Training Loss: 0.0001 - Training MSE: 0.0001
981
+ Step [300/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
982
+ Step [400/6957] - Training Loss: 0.0009 - Training MSE: 0.0000
983
+ Step [500/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
984
+ Step [600/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
985
+ Step [700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
986
+ Step [800/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
987
+ Step [900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
988
+ Step [1000/6957] - Training Loss: 0.0003 - Training MSE: 0.0000
989
+ Step [1100/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
990
+ Step [1200/6957] - Training Loss: 0.0002 - Training MSE: 0.0000
991
+ Step [1300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
992
+ Step [1400/6957] - Training Loss: 0.0004 - Training MSE: 0.0000
993
+ Step [1500/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
994
+ Step [1600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
995
+ Step [1700/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
996
+ Step [1800/6957] - Training Loss: 0.0004 - Training MSE: 0.0000
997
+ Step [1900/6957] - Training Loss: 0.0005 - Training MSE: 0.0000
998
+ Step [2000/6957] - Training Loss: 0.0010 - Training MSE: 0.0000
999
+ Step [2100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1000
+ Step [2200/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1001
+ Step [2300/6957] - Training Loss: 0.0002 - Training MSE: 0.0000
1002
+ Step [2400/6957] - Training Loss: 0.0011 - Training MSE: 0.0000
1003
+ Step [2500/6957] - Training Loss: 0.0002 - Training MSE: 0.0000
1004
+ Step [2600/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1005
+ Step [2700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1006
+ Step [2800/6957] - Training Loss: 0.0002 - Training MSE: 0.0000
1007
+ Step [2900/6957] - Training Loss: 0.0002 - Training MSE: 0.0000
1008
+ Step [3000/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1009
+ Step [3100/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1010
+ Step [3200/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1011
+ Step [3300/6957] - Training Loss: 0.0003 - Training MSE: 0.0000
1012
+ Step [3400/6957] - Training Loss: 0.0174 - Training MSE: 0.0000
1013
+ Step [3500/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1014
+ Step [3600/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1015
+ Step [3700/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1016
+ Step [3800/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1017
+ Step [3900/6957] - Training Loss: 0.0003 - Training MSE: 0.0000
1018
+ Step [4000/6957] - Training Loss: 0.0002 - Training MSE: 0.0000
1019
+ Step [4100/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1020
+ Step [4200/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1021
+ Step [4300/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1022
+ Step [4400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1023
+ Step [4500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1024
+ Step [4600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1025
+ Step [4700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1026
+ Step [4800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1027
+ Step [4900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1028
+ Step [5000/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1029
+ Step [5100/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1030
+ Step [5200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1031
+ Step [5300/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1032
+ Step [5400/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1033
+ Step [5500/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1034
+ Step [5600/6957] - Training Loss: 0.0005 - Training MSE: 0.0000
1035
+ Step [5700/6957] - Training Loss: 0.0458 - Training MSE: 0.0000
1036
+ Step [5800/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1037
+ Step [5900/6957] - Training Loss: 0.0002 - Training MSE: 0.0000
1038
+ Step [6000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1039
+ Step [6100/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1040
+ Step [6200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1041
+ Step [6300/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1042
+ Step [6400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1043
+ Step [6500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1044
+ Step [6600/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1045
+ Step [6700/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1046
+ Step [6800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1047
+ Step [6900/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1048
+ Epoch [14/20] - Training Loss: 0.0006, Training MSE: 0.0000 - Validation Loss: 0.3896, Validation MSE: 0.0243
1049
+ Step [100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1050
+ Step [200/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1051
+ Step [300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1052
+ Step [400/6957] - Training Loss: 0.0003 - Training MSE: 0.0000
1053
+ Step [500/6957] - Training Loss: 0.0067 - Training MSE: 0.0000
1054
+ Step [600/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1055
+ Step [700/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1056
+ Step [800/6957] - Training Loss: 0.0004 - Training MSE: 0.0000
1057
+ Step [900/6957] - Training Loss: 0.0005 - Training MSE: 0.0000
1058
+ Step [1000/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1059
+ Step [1100/6957] - Training Loss: 0.0002 - Training MSE: 0.0000
1060
+ Step [1200/6957] - Training Loss: 0.0002 - Training MSE: 0.0000
1061
+ Step [1300/6957] - Training Loss: 0.0002 - Training MSE: 0.0000
1062
+ Step [1400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1063
+ Step [1500/6957] - Training Loss: 0.0002 - Training MSE: 0.0000
1064
+ Step [1600/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1065
+ Step [1700/6957] - Training Loss: 0.0002 - Training MSE: 0.0000
1066
+ Step [1800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1067
+ Step [1900/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1068
+ Step [2000/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1069
+ Step [2100/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1070
+ Step [2200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1071
+ Step [2300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1072
+ Step [2400/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1073
+ Step [2500/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1074
+ Step [2600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1075
+ Step [2700/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1076
+ Step [2800/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1077
+ Step [2900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1078
+ Step [3000/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1079
+ Step [3100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1080
+ Step [3200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1081
+ Step [3300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1082
+ Step [3400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1083
+ Step [3500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1084
+ Step [3600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1085
+ Step [3700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1086
+ Step [3800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1087
+ Step [3900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1088
+ Step [4000/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1089
+ Step [4100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1090
+ Step [4200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1091
+ Step [4300/6957] - Training Loss: 0.0002 - Training MSE: 0.0000
1092
+ Step [4400/6957] - Training Loss: 0.0003 - Training MSE: 0.0000
1093
+ Step [4500/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1094
+ Step [4600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1095
+ Step [4700/6957] - Training Loss: 0.0002 - Training MSE: 0.0000
1096
+ Step [4800/6957] - Training Loss: 0.0002 - Training MSE: 0.0000
1097
+ Step [4900/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1098
+ Step [5000/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1099
+ Step [5100/6957] - Training Loss: 0.0002 - Training MSE: 0.0000
1100
+ Step [5200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1101
+ Step [5300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1102
+ Step [5400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1103
+ Step [5500/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1104
+ Step [5600/6957] - Training Loss: 0.0037 - Training MSE: 0.0000
1105
+ Step [5700/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1106
+ Step [5800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1107
+ Step [5900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1108
+ Step [6000/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1109
+ Step [6100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1110
+ Step [6200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1111
+ Step [6300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1112
+ Step [6400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1113
+ Step [6500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1114
+ Step [6600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1115
+ Step [6700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1116
+ Step [6800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1117
+ Step [6900/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1118
+ Epoch [15/20] - Training Loss: 0.0003, Training MSE: 0.0000 - Validation Loss: 0.3805, Validation MSE: 0.0238
1119
+ Step [100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1120
+ Step [200/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1121
+ Step [300/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1122
+ Step [400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1123
+ Step [500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1124
+ Step [600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1125
+ Step [700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1126
+ Step [800/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1127
+ Step [900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1128
+ Step [1000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1129
+ Step [1100/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1130
+ Step [1200/6957] - Training Loss: 0.0002 - Training MSE: 0.0000
1131
+ Step [1300/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1132
+ Step [1400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1133
+ Step [1500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1134
+ Step [1600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1135
+ Step [1700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1136
+ Step [1800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1137
+ Step [1900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1138
+ Step [2000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1139
+ Step [2100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1140
+ Step [2200/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1141
+ Step [2300/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1142
+ Step [2400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1143
+ Step [2500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1144
+ Step [2600/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1145
+ Step [2700/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1146
+ Step [2800/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1147
+ Step [2900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1148
+ Step [3000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1149
+ Step [3100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1150
+ Step [3200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1151
+ Step [3300/6957] - Training Loss: 0.0002 - Training MSE: 0.0000
1152
+ Step [3400/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1153
+ Step [3500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1154
+ Step [3600/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1155
+ Step [3700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1156
+ Step [3800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1157
+ Step [3900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1158
+ Step [4000/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1159
+ Step [4100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1160
+ Step [4200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1161
+ Step [4300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1162
+ Step [4400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1163
+ Step [4500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1164
+ Step [4600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1165
+ Step [4700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1166
+ Step [4800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1167
+ Step [4900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1168
+ Step [5000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1169
+ Step [5100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1170
+ Step [5200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1171
+ Step [5300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1172
+ Step [5400/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1173
+ Step [5500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1174
+ Step [5600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1175
+ Step [5700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1176
+ Step [5800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1177
+ Step [5900/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1178
+ Step [6000/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1179
+ Step [6100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1180
+ Step [6200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1181
+ Step [6300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1182
+ Step [6400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1183
+ Step [6500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1184
+ Step [6600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1185
+ Step [6700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1186
+ Step [6800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1187
+ Step [6900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1188
+ Epoch [16/20] - Training Loss: 0.0002, Training MSE: 0.0000 - Validation Loss: 0.3771, Validation MSE: 0.0236
1189
+ Step [100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1190
+ Step [200/6957] - Training Loss: 0.0004 - Training MSE: 0.0000
1191
+ Step [300/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1192
+ Step [400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1193
+ Step [500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1194
+ Step [600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1195
+ Step [700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1196
+ Step [800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1197
+ Step [900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1198
+ Step [1000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1199
+ Step [1100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1200
+ Step [1200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1201
+ Step [1300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1202
+ Step [1400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1203
+ Step [1500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1204
+ Step [1600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1205
+ Step [1700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1206
+ Step [1800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1207
+ Step [1900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1208
+ Step [2000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1209
+ Step [2100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1210
+ Step [2200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1211
+ Step [2300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1212
+ Step [2400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1213
+ Step [2500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1214
+ Step [2600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1215
+ Step [2700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1216
+ Step [2800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1217
+ Step [2900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1218
+ Step [3000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1219
+ Step [3100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1220
+ Step [3200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1221
+ Step [3300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1222
+ Step [3400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1223
+ Step [3500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1224
+ Step [3600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1225
+ Step [3700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1226
+ Step [3800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1227
+ Step [3900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1228
+ Step [4000/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1229
+ Step [4100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1230
+ Step [4200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1231
+ Step [4300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1232
+ Step [4400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1233
+ Step [4500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1234
+ Step [4600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1235
+ Step [4700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1236
+ Step [4800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1237
+ Step [4900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1238
+ Step [5000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1239
+ Step [5100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1240
+ Step [5200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1241
+ Step [5300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1242
+ Step [5400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1243
+ Step [5500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1244
+ Step [5600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1245
+ Step [5700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1246
+ Step [5800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1247
+ Step [5900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1248
+ Step [6000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1249
+ Step [6100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1250
+ Step [6200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1251
+ Step [6300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1252
+ Step [6400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1253
+ Step [6500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1254
+ Step [6600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1255
+ Step [6700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1256
+ Step [6800/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1257
+ Step [6900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1258
+ Epoch [17/20] - Training Loss: 0.0001, Training MSE: 0.0000 - Validation Loss: 0.3723, Validation MSE: 0.0233
1259
+ Step [100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1260
+ Step [200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1261
+ Step [300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1262
+ Step [400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1263
+ Step [500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1264
+ Step [600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1265
+ Step [700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1266
+ Step [800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1267
+ Step [900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1268
+ Step [1000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1269
+ Step [1100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1270
+ Step [1200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1271
+ Step [1300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1272
+ Step [1400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1273
+ Step [1500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1274
+ Step [1600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1275
+ Step [1700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1276
+ Step [1800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1277
+ Step [1900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1278
+ Step [2000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1279
+ Step [2100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1280
+ Step [2200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1281
+ Step [2300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1282
+ Step [2400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1283
+ Step [2500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1284
+ Step [2600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1285
+ Step [2700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1286
+ Step [2800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1287
+ Step [2900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1288
+ Step [3000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1289
+ Step [3100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1290
+ Step [3200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1291
+ Step [3300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1292
+ Step [3400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1293
+ Step [3500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1294
+ Step [3600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1295
+ Step [3700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1296
+ Step [3800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1297
+ Step [3900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1298
+ Step [4000/6957] - Training Loss: 0.0001 - Training MSE: 0.0000
1299
+ Step [4100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1300
+ Step [4200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1301
+ Step [4300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1302
+ Step [4400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1303
+ Step [4500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1304
+ Step [4600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1305
+ Step [4700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1306
+ Step [4800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1307
+ Step [4900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1308
+ Step [5000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1309
+ Step [5100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1310
+ Step [5200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1311
+ Step [5300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1312
+ Step [5400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1313
+ Step [5500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1314
+ Step [5600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1315
+ Step [5700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1316
+ Step [5800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1317
+ Step [5900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1318
+ Step [6000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1319
+ Step [6100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1320
+ Step [6200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1321
+ Step [6300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1322
+ Step [6400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1323
+ Step [6500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1324
+ Step [6600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1325
+ Step [6700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1326
+ Step [6800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1327
+ Step [6900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1328
+ Epoch [18/20] - Training Loss: 0.0000, Training MSE: 0.0000 - Validation Loss: 0.3721, Validation MSE: 0.0233
1329
+ Step [100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1330
+ Step [200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1331
+ Step [300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1332
+ Step [400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1333
+ Step [500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1334
+ Step [600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1335
+ Step [700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1336
+ Step [800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1337
+ Step [900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1338
+ Step [1000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1339
+ Step [1100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1340
+ Step [1200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1341
+ Step [1300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1342
+ Step [1400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1343
+ Step [1500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1344
+ Step [1600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1345
+ Step [1700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1346
+ Step [1800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1347
+ Step [1900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1348
+ Step [2000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1349
+ Step [2100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1350
+ Step [2200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1351
+ Step [2300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1352
+ Step [2400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1353
+ Step [2500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1354
+ Step [2600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1355
+ Step [2700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1356
+ Step [2800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1357
+ Step [2900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1358
+ Step [3000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1359
+ Step [3100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1360
+ Step [3200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1361
+ Step [3300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1362
+ Step [3400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1363
+ Step [3500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1364
+ Step [3600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1365
+ Step [3700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1366
+ Step [3800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1367
+ Step [3900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1368
+ Step [4000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1369
+ Step [4100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1370
+ Step [4200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1371
+ Step [4300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1372
+ Step [4400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1373
+ Step [4500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1374
+ Step [4600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1375
+ Step [4700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1376
+ Step [4800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1377
+ Step [4900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1378
+ Step [5000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1379
+ Step [5100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1380
+ Step [5200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1381
+ Step [5300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1382
+ Step [5400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1383
+ Step [5500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1384
+ Step [5600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1385
+ Step [5700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1386
+ Step [5800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1387
+ Step [5900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1388
+ Step [6000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1389
+ Step [6100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1390
+ Step [6200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1391
+ Step [6300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1392
+ Step [6400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1393
+ Step [6500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1394
+ Step [6600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1395
+ Step [6700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1396
+ Step [6800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1397
+ Step [6900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1398
+ Epoch [19/20] - Training Loss: 0.0000, Training MSE: 0.0000 - Validation Loss: 0.3732, Validation MSE: 0.0233
1399
+ Step [100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1400
+ Step [200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1401
+ Step [300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1402
+ Step [400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1403
+ Step [500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1404
+ Step [600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1405
+ Step [700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1406
+ Step [800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1407
+ Step [900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1408
+ Step [1000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1409
+ Step [1100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1410
+ Step [1200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1411
+ Step [1300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1412
+ Step [1400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1413
+ Step [1500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1414
+ Step [1600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1415
+ Step [1700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1416
+ Step [1800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1417
+ Step [1900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1418
+ Step [2000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1419
+ Step [2100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1420
+ Step [2200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1421
+ Step [2300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1422
+ Step [2400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1423
+ Step [2500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1424
+ Step [2600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1425
+ Step [2700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1426
+ Step [2800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1427
+ Step [2900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1428
+ Step [3000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1429
+ Step [3100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1430
+ Step [3200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1431
+ Step [3300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1432
+ Step [3400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1433
+ Step [3500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1434
+ Step [3600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1435
+ Step [3700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1436
+ Step [3800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1437
+ Step [3900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1438
+ Step [4000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1439
+ Step [4100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1440
+ Step [4200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1441
+ Step [4300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1442
+ Step [4400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1443
+ Step [4500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1444
+ Step [4600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1445
+ Step [4700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1446
+ Step [4800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1447
+ Step [4900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1448
+ Step [5000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1449
+ Step [5100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1450
+ Step [5200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1451
+ Step [5300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1452
+ Step [5400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1453
+ Step [5500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1454
+ Step [5600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1455
+ Step [5700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1456
+ Step [5800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1457
+ Step [5900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1458
+ Step [6000/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1459
+ Step [6100/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1460
+ Step [6200/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1461
+ Step [6300/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1462
+ Step [6400/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1463
+ Step [6500/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1464
+ Step [6600/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1465
+ Step [6700/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1466
+ Step [6800/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1467
+ Step [6900/6957] - Training Loss: 0.0000 - Training MSE: 0.0000
1468
+ Epoch [20/20] - Training Loss: 0.0000, Training MSE: 0.0000 - Validation Loss: 0.3730, Validation MSE: 0.0233
1469
+ wandb: 🚀 View run HCPflat_large_gsrFalse__beta_age_HCPFT at: https://stability.wandb.io/ckadirt/fMRI-foundation-model/runs/HCPflat_large_gsrFalse__beta_age_HCPFT_d344d64d-8300-4465-8e75-b35200117944
1470
+ wandb: Find logs at: wandb/run-20241127_023614-HCPflat_large_gsrFalse__beta_age_HCPFT_d344d64d-8300-4465-8e75-b35200117944/logs
541360.err ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:992c93a72705f7b1913906a6154cace15e243ed86564339518ce4fe1f3313168
3
+ size 13421980