--- language: en license: mit tags: - flood-segmentation - remote-sensing - earth-observation - dem - computer-vision - prithvi - foundation-model datasets: - custom-flood-dataset metrics: - iou - dice - f1 library_name: terratorch pipeline_tag: image-segmentation --- # ResNet-101 U-Net for Flood Risk Segmentation ## Model Description This model is a ResNet-101 U-Net fine-tuned for flood risk segmentation from Digital Elevation Models (DEM) and precipitation data. ResNet-101 backbone U-Net for flood segmentation ## Model Details - **Architecture**: ResNet-101 U-Net - **Training Epochs**: 49 - **Model Size**: 779MB - **Task**: Semantic Segmentation (Flood Risk Prediction) - **Input**: DEM + Precipitation data - **Output**: Flood depth categories ## Usage ```python import torch from terratorch.tasks import SemanticSegmentationTask # Load the model model = SemanticSegmentationTask.load_from_checkpoint("path/to/checkpoint.ckpt") model.eval() # Your inference code here ``` ## Training Data The model was trained on flood simulation data from multiple US counties, including: - DEM data from USGS National Map - Precipitation data from NOAA Atlas 14 - Simulated flood depth labels ## Performance The model achieves state-of-the-art performance on flood segmentation tasks across diverse geographical regions. ## Limitations - Model is trained primarily on US geographical data - Performance may vary on international datasets - Requires specific input preprocessing ## Citation If you use this model in your research, please cite: ``` @misc{flood-foundation-model-resnet101-unet, title={Flood Risk Foundation Model: ResNet-101 U-Net}, author={FloodRisk-DL Team}, year={2024}, url={https://huggingface.co/chrimerss/flood-foundation-resnet101-unet} } ```