Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- flood-segmentation
|
6 |
+
- remote-sensing
|
7 |
+
- earth-observation
|
8 |
+
- dem
|
9 |
+
- computer-vision
|
10 |
+
- prithvi
|
11 |
+
- foundation-model
|
12 |
+
datasets:
|
13 |
+
- custom-flood-dataset
|
14 |
+
metrics:
|
15 |
+
- iou
|
16 |
+
- dice
|
17 |
+
- f1
|
18 |
+
library_name: terratorch
|
19 |
+
pipeline_tag: image-segmentation
|
20 |
+
---
|
21 |
+
|
22 |
+
# ResNet-101 U-Net for Flood Risk Segmentation
|
23 |
+
|
24 |
+
## Model Description
|
25 |
+
|
26 |
+
This model is a ResNet-101 U-Net fine-tuned for flood risk segmentation from Digital Elevation Models (DEM) and precipitation data.
|
27 |
+
|
28 |
+
ResNet-101 backbone U-Net for flood segmentation
|
29 |
+
|
30 |
+
## Model Details
|
31 |
+
|
32 |
+
- **Architecture**: ResNet-101 U-Net
|
33 |
+
- **Training Epochs**: 49
|
34 |
+
- **Model Size**: 779MB
|
35 |
+
- **Task**: Semantic Segmentation (Flood Risk Prediction)
|
36 |
+
- **Input**: DEM + Precipitation data
|
37 |
+
- **Output**: Flood depth categories
|
38 |
+
|
39 |
+
## Usage
|
40 |
+
|
41 |
+
```python
|
42 |
+
import torch
|
43 |
+
from terratorch.tasks import SemanticSegmentationTask
|
44 |
+
|
45 |
+
# Load the model
|
46 |
+
model = SemanticSegmentationTask.load_from_checkpoint("path/to/checkpoint.ckpt")
|
47 |
+
model.eval()
|
48 |
+
|
49 |
+
# Your inference code here
|
50 |
+
```
|
51 |
+
|
52 |
+
## Training Data
|
53 |
+
|
54 |
+
The model was trained on flood simulation data from multiple US counties, including:
|
55 |
+
- DEM data from USGS National Map
|
56 |
+
- Precipitation data from NOAA Atlas 14
|
57 |
+
- Simulated flood depth labels
|
58 |
+
|
59 |
+
## Performance
|
60 |
+
|
61 |
+
The model achieves state-of-the-art performance on flood segmentation tasks across diverse geographical regions.
|
62 |
+
|
63 |
+
## Limitations
|
64 |
+
|
65 |
+
- Model is trained primarily on US geographical data
|
66 |
+
- Performance may vary on international datasets
|
67 |
+
- Requires specific input preprocessing
|
68 |
+
|
69 |
+
## Citation
|
70 |
+
|
71 |
+
If you use this model in your research, please cite:
|
72 |
+
|
73 |
+
```
|
74 |
+
@misc{flood-foundation-model-resnet101-unet,
|
75 |
+
title={Flood Risk Foundation Model: ResNet-101 U-Net},
|
76 |
+
author={FloodRisk-DL Team},
|
77 |
+
year={2024},
|
78 |
+
url={https://huggingface.co/chrimerss/flood-foundation-resnet101-unet}
|
79 |
+
}
|
80 |
+
```
|