chrimerss commited on
Commit
c1b3ae0
·
verified ·
1 Parent(s): 56059a8

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - flood-segmentation
6
+ - remote-sensing
7
+ - earth-observation
8
+ - dem
9
+ - computer-vision
10
+ - prithvi
11
+ - foundation-model
12
+ datasets:
13
+ - custom-flood-dataset
14
+ metrics:
15
+ - iou
16
+ - dice
17
+ - f1
18
+ library_name: terratorch
19
+ pipeline_tag: image-segmentation
20
+ ---
21
+
22
+ # ResNet-101 U-Net for Flood Risk Segmentation
23
+
24
+ ## Model Description
25
+
26
+ This model is a ResNet-101 U-Net fine-tuned for flood risk segmentation from Digital Elevation Models (DEM) and precipitation data.
27
+
28
+ ResNet-101 backbone U-Net for flood segmentation
29
+
30
+ ## Model Details
31
+
32
+ - **Architecture**: ResNet-101 U-Net
33
+ - **Training Epochs**: 49
34
+ - **Model Size**: 779MB
35
+ - **Task**: Semantic Segmentation (Flood Risk Prediction)
36
+ - **Input**: DEM + Precipitation data
37
+ - **Output**: Flood depth categories
38
+
39
+ ## Usage
40
+
41
+ ```python
42
+ import torch
43
+ from terratorch.tasks import SemanticSegmentationTask
44
+
45
+ # Load the model
46
+ model = SemanticSegmentationTask.load_from_checkpoint("path/to/checkpoint.ckpt")
47
+ model.eval()
48
+
49
+ # Your inference code here
50
+ ```
51
+
52
+ ## Training Data
53
+
54
+ The model was trained on flood simulation data from multiple US counties, including:
55
+ - DEM data from USGS National Map
56
+ - Precipitation data from NOAA Atlas 14
57
+ - Simulated flood depth labels
58
+
59
+ ## Performance
60
+
61
+ The model achieves state-of-the-art performance on flood segmentation tasks across diverse geographical regions.
62
+
63
+ ## Limitations
64
+
65
+ - Model is trained primarily on US geographical data
66
+ - Performance may vary on international datasets
67
+ - Requires specific input preprocessing
68
+
69
+ ## Citation
70
+
71
+ If you use this model in your research, please cite:
72
+
73
+ ```
74
+ @misc{flood-foundation-model-resnet101-unet,
75
+ title={Flood Risk Foundation Model: ResNet-101 U-Net},
76
+ author={FloodRisk-DL Team},
77
+ year={2024},
78
+ url={https://huggingface.co/chrimerss/flood-foundation-resnet101-unet}
79
+ }
80
+ ```