chenjoya commited on
Commit
6d57dfa
·
verified ·
1 Parent(s): 054f961

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -34
README.md CHANGED
@@ -27,8 +27,16 @@ We introduce LiveCC, the first video LLM capable of real-time commentary, traine
27
  ## Training with Streaming Frame-Words Paradigm
28
 
29
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/642435a1a3adbc7142c3b0a6/T-Zs50VlFT2tE7RdV49TE.png)
30
-
31
  ## Quickstart
 
 
 
 
 
 
 
 
 
32
  Like qwen-vl-utils, we offer a toolkit to help you handle various types of visual input more conveniently, **especially on video streaming inputs**. You can install it using the following command:
33
 
34
  ```bash
@@ -59,7 +67,6 @@ class LiveCCDemoInfer:
59
  attn_implementation='flash_attention_2'
60
  )
61
  self.processor = AutoProcessor.from_pretrained(model_path, use_fast=False)
62
- self.streaming_eos_token_id = self.processor.tokenizer(' ...').input_ids[-1]
63
  self.model.prepare_inputs_for_generation = functools.partial(prepare_multiturn_multimodal_inputs_for_generation, self.model)
64
  message = {
65
  "role": "user",
@@ -71,7 +78,7 @@ class LiveCCDemoInfer:
71
  self.system_prompt_offset = texts.index('<|im_start|>user')
72
  self._cached_video_readers_with_hw = {}
73
 
74
- @torch.inference_mode()
75
  def live_cc(
76
  self,
77
  query: str,
@@ -80,8 +87,6 @@ class LiveCCDemoInfer:
80
  default_query: str = 'Please describe the video.',
81
  do_sample: bool = False,
82
  repetition_penalty: float = 1.05,
83
- streaming_eos_base_threshold: float = None,
84
- streaming_eos_threshold_step: float = None,
85
  **kwargs,
86
  ):
87
  """
@@ -92,6 +97,8 @@ class LiveCCDemoInfer:
92
  last_video_pts_index: int, last processed video frame index
93
  video_pts: np.ndarray, video pts
94
  last_history: list, last processed history
 
 
95
  """
96
  # 1. preparation: video_reader, and last processing info
97
  video_timestamp, last_timestamp = state.get('video_timestamp', 0), state.get('last_timestamp', -1 / self.fps)
@@ -145,7 +152,7 @@ class LiveCCDemoInfer:
145
  }
146
  if not query and not state.get('query', None):
147
  query = default_query
148
- logger.warning(f'No query provided, use default_query={default_query}')
149
  if query and state.get('query', None) != query:
150
  message['content'].append({"type": "text", "text": query})
151
  state['query'] = query
@@ -163,23 +170,19 @@ class LiveCCDemoInfer:
163
  inputs.to('cuda')
164
  if past_ids is not None:
165
  inputs['input_ids'] = torch.cat([past_ids, inputs.input_ids], dim=1)
166
- if streaming_eos_base_threshold is not None:
167
- logits_processor = [ThresholdLogitsProcessor(self.streaming_eos_token_id, streaming_eos_base_threshold, streaming_eos_threshold_step)]
168
- else:
169
- logits_processor = None
170
  outputs = self.model.generate(
171
  **inputs, past_key_values=state.get('past_key_values', None),
172
  return_dict_in_generate=True, do_sample=do_sample,
173
  repetition_penalty=repetition_penalty,
174
- logits_processor=logits_processor,
175
  )
176
  state['past_key_values'] = outputs.past_key_values
177
  state['past_ids'] = outputs.sequences[:, :-1]
178
  yield (start_timestamp, stop_timestamp), self.processor.decode(outputs.sequences[0, inputs.input_ids.size(1):], skip_special_tokens=True), state
179
 
180
  model_path = 'chenjoya/LiveCC-7B-Base'
181
- video_path = "spacex_falcon9.mp4"
182
- query = """Let's wait together!"""
 
183
 
184
  infer = LiveCCDemoInfer(model_path=model_path)
185
  state = {'video_path': video_path}
@@ -189,7 +192,7 @@ for t in range(31):
189
  state['video_timestamp'] = t
190
  for (start_t, stop_t), response, state in infer.live_cc(
191
  query=query, state=state,
192
- max_pixels = 512 * 28 * 28, repetition_penalty=1.05,
193
  streaming_eos_base_threshold=0.0, streaming_eos_threshold_step=0
194
  ):
195
  print(f'{start_t}s-{stop_t}s: {response}')
@@ -220,7 +223,7 @@ class LiveCCDemoInfer:
220
  self.model = Qwen2VLForConditionalGeneration.from_pretrained(
221
  model_path, torch_dtype="auto",
222
  device_map=device,
223
- attn_implementation='sdpa'
224
  )
225
  self.processor = AutoProcessor.from_pretrained(model_path, use_fast=False)
226
  self.streaming_eos_token_id = self.processor.tokenizer(' ...').input_ids[-1]
@@ -233,17 +236,13 @@ class LiveCCDemoInfer:
233
  }
234
  texts = self.processor.apply_chat_template([message], tokenize=False)
235
  self.system_prompt_offset = texts.index('<|im_start|>user')
236
- self._cached_video_readers_with_hw = {}
237
 
238
- @torch.inference_mode()
239
  def video_qa(
240
  self,
241
  message: str,
242
  state: dict,
243
- history: list = [],
244
  do_sample: bool = False,
245
  repetition_penalty: float = 1.05,
246
- hf_spaces: bool = False,
247
  **kwargs,
248
  ):
249
  """
@@ -254,18 +253,11 @@ class LiveCCDemoInfer:
254
  last_video_pts_index: int, last processed video frame index
255
  video_pts: np.ndarray, video pts
256
  last_history: list, last processed history
 
 
257
  """
258
  video_path = state.get('video_path', None)
259
  conversation = []
260
- if hf_spaces:
261
- for past_message in history:
262
- content = [{"type": "text", "text": past_message['content']}]
263
- if video_path: # only use once
264
- content.insert(0, {"type": "video", "video": video_path})
265
- video_path = None
266
- conversation.append({"role": past_message["role"], "content": content})
267
- else:
268
- pass # use past_key_values
269
  past_ids = state.get('past_ids', None)
270
  content = [{"type": "text", "text": message}]
271
  if past_ids is None and video_path: # only use once
@@ -291,23 +283,27 @@ class LiveCCDemoInfer:
291
  repetition_penalty=repetition_penalty,
292
  max_new_tokens=512,
293
  )
294
- state['past_key_values'] = outputs.past_key_values if not hf_spaces else None
295
- state['past_ids'] = outputs.sequences[:, :-1] if not hf_spaces else None
296
  response = self.processor.decode(outputs.sequences[0, inputs.input_ids.size(1):], skip_special_tokens=True)
297
  return response, state
298
 
299
  model_path = 'chenjoya/LiveCC-7B-Base'
300
- video_path = "spacex_falcon9.mp4"
 
301
 
302
  infer = LiveCCDemoInfer(model_path=model_path)
303
  state = {'video_path': video_path}
304
  # first round
305
- response, state = infer.video_qa(message='What is the video?', state=state)
 
 
306
  # second round
307
- response, state = infer.video_qa(message='What? Say again.', state=state)
 
 
308
  ```
309
 
310
-
311
  ## Limitations
312
 
313
  - This model is only performed video-ASR streaming pre-training, so it may not support well in common video qa.
 
27
  ## Training with Streaming Frame-Words Paradigm
28
 
29
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/642435a1a3adbc7142c3b0a6/T-Zs50VlFT2tE7RdV49TE.png)
 
30
  ## Quickstart
31
+
32
+ ### Gradio Demo
33
+
34
+ Please refer to https://github.com/showlab/livecc:
35
+
36
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/642435a1a3adbc7142c3b0a6/HUvadZRIhrT5vd332XBO3.png)
37
+
38
+ ### Hands-on
39
+
40
  Like qwen-vl-utils, we offer a toolkit to help you handle various types of visual input more conveniently, **especially on video streaming inputs**. You can install it using the following command:
41
 
42
  ```bash
 
67
  attn_implementation='flash_attention_2'
68
  )
69
  self.processor = AutoProcessor.from_pretrained(model_path, use_fast=False)
 
70
  self.model.prepare_inputs_for_generation = functools.partial(prepare_multiturn_multimodal_inputs_for_generation, self.model)
71
  message = {
72
  "role": "user",
 
78
  self.system_prompt_offset = texts.index('<|im_start|>user')
79
  self._cached_video_readers_with_hw = {}
80
 
81
+
82
  def live_cc(
83
  self,
84
  query: str,
 
87
  default_query: str = 'Please describe the video.',
88
  do_sample: bool = False,
89
  repetition_penalty: float = 1.05,
 
 
90
  **kwargs,
91
  ):
92
  """
 
97
  last_video_pts_index: int, last processed video frame index
98
  video_pts: np.ndarray, video pts
99
  last_history: list, last processed history
100
+ past_key_values: llm past_key_values
101
+ past_ids: past generated ids
102
  """
103
  # 1. preparation: video_reader, and last processing info
104
  video_timestamp, last_timestamp = state.get('video_timestamp', 0), state.get('last_timestamp', -1 / self.fps)
 
152
  }
153
  if not query and not state.get('query', None):
154
  query = default_query
155
+ print(f'No query provided, use default_query={default_query}')
156
  if query and state.get('query', None) != query:
157
  message['content'].append({"type": "text", "text": query})
158
  state['query'] = query
 
170
  inputs.to('cuda')
171
  if past_ids is not None:
172
  inputs['input_ids'] = torch.cat([past_ids, inputs.input_ids], dim=1)
 
 
 
 
173
  outputs = self.model.generate(
174
  **inputs, past_key_values=state.get('past_key_values', None),
175
  return_dict_in_generate=True, do_sample=do_sample,
176
  repetition_penalty=repetition_penalty,
 
177
  )
178
  state['past_key_values'] = outputs.past_key_values
179
  state['past_ids'] = outputs.sequences[:, :-1]
180
  yield (start_timestamp, stop_timestamp), self.processor.decode(outputs.sequences[0, inputs.input_ids.size(1):], skip_special_tokens=True), state
181
 
182
  model_path = 'chenjoya/LiveCC-7B-Base'
183
+ # download a test video at: https://github.com/showlab/livecc/blob/main/demo/sources/howto_fix_laptop_mute_1080p.mp4
184
+ video_path = "demo/sources/howto_fix_laptop_mute_1080p.mp4"
185
+ query = "Please describe the video."
186
 
187
  infer = LiveCCDemoInfer(model_path=model_path)
188
  state = {'video_path': video_path}
 
192
  state['video_timestamp'] = t
193
  for (start_t, stop_t), response, state in infer.live_cc(
194
  query=query, state=state,
195
+ max_pixels = 384 * 28 * 28, repetition_penalty=1.05,
196
  streaming_eos_base_threshold=0.0, streaming_eos_threshold_step=0
197
  ):
198
  print(f'{start_t}s-{stop_t}s: {response}')
 
223
  self.model = Qwen2VLForConditionalGeneration.from_pretrained(
224
  model_path, torch_dtype="auto",
225
  device_map=device,
226
+ attn_implementation='flash_attention_2'
227
  )
228
  self.processor = AutoProcessor.from_pretrained(model_path, use_fast=False)
229
  self.streaming_eos_token_id = self.processor.tokenizer(' ...').input_ids[-1]
 
236
  }
237
  texts = self.processor.apply_chat_template([message], tokenize=False)
238
  self.system_prompt_offset = texts.index('<|im_start|>user')
 
239
 
 
240
  def video_qa(
241
  self,
242
  message: str,
243
  state: dict,
 
244
  do_sample: bool = False,
245
  repetition_penalty: float = 1.05,
 
246
  **kwargs,
247
  ):
248
  """
 
253
  last_video_pts_index: int, last processed video frame index
254
  video_pts: np.ndarray, video pts
255
  last_history: list, last processed history
256
+ past_key_values: llm past_key_values
257
+ past_ids: past generated ids
258
  """
259
  video_path = state.get('video_path', None)
260
  conversation = []
 
 
 
 
 
 
 
 
 
261
  past_ids = state.get('past_ids', None)
262
  content = [{"type": "text", "text": message}]
263
  if past_ids is None and video_path: # only use once
 
283
  repetition_penalty=repetition_penalty,
284
  max_new_tokens=512,
285
  )
286
+ state['past_key_values'] = outputs.past_key_values
287
+ state['past_ids'] = outputs.sequences[:, :-1]
288
  response = self.processor.decode(outputs.sequences[0, inputs.input_ids.size(1):], skip_special_tokens=True)
289
  return response, state
290
 
291
  model_path = 'chenjoya/LiveCC-7B-Base'
292
+ # download a test video at: https://github.com/showlab/livecc/blob/main/demo/sources/howto_fix_laptop_mute_1080p.mp4
293
+ video_path = "demo/sources/howto_fix_laptop_mute_1080p.mp4"
294
 
295
  infer = LiveCCDemoInfer(model_path=model_path)
296
  state = {'video_path': video_path}
297
  # first round
298
+ query1 = 'What is the video?'
299
+ response1, state = infer.video_qa(message=query1, state=state)
300
+ print(f'Q1: {query1}\nA1: {response1}')
301
  # second round
302
+ query2 = 'How do you know that?'
303
+ response2, state = infer.video_qa(message=query2, state=state)
304
+ print(f'Q2: {query2}\nA2: {response2}')
305
  ```
306
 
 
307
  ## Limitations
308
 
309
  - This model is only performed video-ASR streaming pre-training, so it may not support well in common video qa.