--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:1334 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: Snowflake/snowflake-arctic-embed-l widget: - source_sentence: How can the quality of reference data constrain outcomes? sentences: - 'Dong et al. (2024a) Qingxiu Dong, Li Dong, Xingxing Zhang, Zhifang Sui, and Furu Wei. 2024a. Self-Boosting Large Language Models with Synthetic Preference Data. arXiv preprint arXiv:2410.06961 (2024). Dong et al. (2022) Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu, Tianyu Liu, et al. 2022. A survey on in-context learning. arXiv preprint arXiv:2301.00234 (2022). Dong et al. (2024b) Yijiang River Dong, Tiancheng Hu, and Nigel Collier. 2024b. Can LLM be a Personalized Judge? arXiv preprint arXiv:2406.11657 (2024). Dorner et al. (2024) Florian E. Dorner, Vivian Y. Nastl, and Moritz Hardt. 2024.' - 'Journal of Natural Language Processing 30, 1 (2023), 243–249. Chen et al. (2024e) Junjie Chen, Weihang Su, Zhumin Chu, Haitao Li, Qinyao Ai, Yiqun Liu, Min Zhang, and Shaoping Ma. 2024e. An Automatic and Cost-Efficient Peer-Review Framework for Language Generation Evaluation. arXiv:2410.12265 [cs.CL] https://arxiv.org/abs/2410.12265 Chen et al. (2023c) Jiefeng Chen, Jinsung Yoon, Sayna Ebrahimi, Sercan O Arik, Tomas Pfister, and Somesh Jha. 2023c. Adaptation with self-evaluation to improve selective prediction in llms. arXiv preprint arXiv:2310.11689 (2023). Chen et al. (2024d)' - may be constrained by the quality and variety of the reference data. - source_sentence: What are the key contributions of Shen and Wan (2023) in the field of reference-free evaluation? sentences: - 'Li et al. (2023c) Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, Hai Zhao, and Pengfei Liu. 2023c. Generative judge for evaluating alignment. arXiv preprint arXiv:2310.05470 (2023). Li et al. (2023a) Qintong Li, Leyang Cui, Lingpeng Kong, and Wei Bi. 2023a. Collaborative Evaluation: Exploring the Synergy of Large Language Models and Humans for Open-ended Generation Evaluation. arXiv preprint arXiv:2310.19740 (2023). Li et al. (2023b) Ruosen Li, Teerth Patel, and Xinya Du. 2023b. Prd: Peer rank and discussion improve large language model based evaluations. arXiv preprint arXiv:2307.02762 (2023). Li et al. (2017)' - 'Springer. Tyen et al. (2023) Gladys Tyen, Hassan Mansoor, Peter Chen, Tony Mak, and Victor Cărbune. 2023. LLMs cannot find reasoning errors, but can correct them! arXiv preprint arXiv:2311.08516 (2023). Valmeekam et al. (2023) Karthik Valmeekam, Matthew Marquez, and Subbarao Kambhampati. 2023. Can large language models really improve by self-critiquing their own plans? arXiv preprint arXiv:2310.08118 (2023). Verga et al. (2024) Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yixuan Su, Aleksandra Piktus, Arkady Arkhangorodsky, Minjie Xu, Naomi White, and Patrick Lewis. 2024.' - 'Reference-Free Evaluation (Shen and Wan, 2023; Zheng et al., 2023a; He et al., 2023b):' - source_sentence: What role do LLM judges play in the iterative refinement process described in the context? sentences: - "[Biases (§7.1)\n[Presentation-Related \n(§7.1.1)\n[Position bias (Blunch, 1984;\ \ Raghubir and Valenzuela, 2006; Ko et al., 2020; Wang et al., 2018; LLMS, 2025;\ \ Zheng et al., 2023a; Chen et al., 2024a; Wang et al., 2023b; Li et al., 2023c;\ \ Zheng et al., 2023b; Raina et al., 2024; Hou et al., 2024; Li et al., 2023d,\ \ b; Khan et al., 2024; Zhou et al., 2023a; Li et al., 2024a; Shi et al., 2024a;\ \ Stureborg et al., 2024; Zhao et al., 2024a), Verbosity bias (Nasrabadi, 2024;\ \ Ye et al., 2024b, a), leaf, text width=41em] ]\n[Social-Related (§7.1.2)" - '3.2.3. Feedback for Refinement After receiving the initial response, LLM judges provide actionable feedback to iteratively improve output quality. By analyzing the response based on specific task criteria, such as accuracy, coherence, or creativity, the LLM can identify weaknesses in the output and offer suggestions for improvement. This iterative refinement process plays a crucial role in applications that require adaptability (Madaan et al., 2024; Paul et al., 2023; Chen et al., 2023a; Xu et al., 2023c; Huang et al., 2023).' - 'Gopalakrishnan et al. (2023) Karthik Gopalakrishnan, Behnam Hedayatnia, Qinlang Chen, Anna Gottardi, Sanjeev Kwatra, Anu Venkatesh, Raefer Gabriel, and Dilek Hakkani-Tur. 2023. Topical-chat: Towards knowledge-grounded open-domain conversations. arXiv preprint arXiv:2308.11995 (2023). Guan et al. (2021) Jian Guan, Zhexin Zhang, Zhuoer Feng, Zitao Liu, Wenbiao Ding, Xiaoxi Mao, Changjie Fan, and Minlie Huang. 2021. OpenMEVA: A benchmark for evaluating open-ended story generation metrics. arXiv preprint arXiv:2105.08920 (2021). Guo et al. (2024)' - source_sentence: In what ways does the LLMAAA approach help mitigate the effects of noisy labels? sentences: - '6.2. Metric The evaluation of LLMs-as-Judges models centers around assessing the extent to which the model’s judgments align with human evaluations, which are typically considered the benchmark for quality. Given the complexity and subjectivity of many evaluation tasks, achieving high agreement with human ratings is a key indicator of the LLM’s performance. To quantify this agreement, a range of statistical metrics is employed. Below, we outline these metrics and their applications in evaluating LLMs-as-Judges models. 6.2.1. Accuracy' - Current LLM-as-Judge systems primarily focus on processing textual data, with limited attention to integrating other modalities like images, audio, and video. This single-modal approach falls short in complex scenarios requiring multimodal analysis, such as combining visual and textual information in medical assessments. Future systems should develop cross-modal integration capabilities to process and evaluate multimodal data simultaneously (Chen et al., 2024b). Leveraging cross-modal validation can enhance evaluation accuracy. Key research areas include efficient multimodal feature extraction, integration, and the design of unified frameworks for more comprehensive and precise evaluations. - Additionally, the LLMAAA (Zhang et al., 2023a) framework incorporates an active learning strategy to efficiently select high-information samples for annotation, thereby mitigating the effects of noisy labels and reducing the reliance on costly human annotation. These approach not only enhance the performance of task-specific models but also offer new perspectives on the efficient application of LLMs in annotation workflows. - source_sentence: What metrics does the LLMS (2025) framework introduce to investigate position bias in pairwise comparisons? sentences: - Overconfidence bias (Khan et al., 2024; Jung et al., 2024) in the context of LLMs-as-judges refers to the tendency of models to exhibit an inflated level of confidence in their judgments, often resulting in overly assertive evaluations that may not accurately reflect the true reliability of the answer. This bias is particularly concerning in evaluative contexts, as it can lead LLMs-as-judges to overstate the correctness of certain outputs, compromising the objectivity and dependability of assessments. - 'Recent studies have further examined position bias in the LLMs-as-judges context. For instance, a framework (LLMS, 2025) is proposed to investigate position bias in pairwise comparisons, introducing metrics such as repetition stability, position consistency, and preference fairness to better understand how positions affect LLM judgments. Another study (Zheng et al., 2023a) explores the limitations of LLMs-as-judges, including position biases, and verifies agreement between LLM judgments and human preferences across multiple benchmarks. These findings underscore the need for robust debiasing strategies to enhance the fairness and reliableness of LLMs-as-judges.' - The search task is a fundamental component of information retrieval (IR), focusing on identifying the most relevant documents from extensive text collections based on user queries. Traditionally, relevance assessments in search tasks have been conducted by human annotators following established guidelines. However, recent advances in large language models (LLMs) have opened up new opportunities for utilizing these models as evaluators, offering an automated and scalable approach to relevance assessment. pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l results: - task: type: information-retrieval name: Information Retrieval dataset: name: Unknown type: unknown metrics: - type: cosine_accuracy@1 value: 0.93 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.99 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 1.0 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 1.0 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.93 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.33000000000000007 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.19999999999999996 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09999999999999998 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.93 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.99 name: Cosine Recall@3 - type: cosine_recall@5 value: 1.0 name: Cosine Recall@5 - type: cosine_recall@10 value: 1.0 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9704150157509183 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9603333333333333 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9603333333333333 name: Cosine Map@100 --- # SentenceTransformer based on Snowflake/snowflake-arctic-embed-l This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("chelleboyer/llm-mm-good-309e6f79-505b-4c23-8452-37cc854e67df") # Run inference sentences = [ 'What metrics does the LLMS (2025) framework introduce to investigate position bias in pairwise comparisons?', 'Recent studies have further examined position bias in the LLMs-as-judges context.\nFor instance, a framework\xa0(LLMS, 2025) is proposed to investigate position bias in pairwise comparisons, introducing metrics such as repetition stability, position consistency, and preference fairness to better understand how positions affect LLM judgments.\nAnother study\xa0(Zheng et\xa0al., 2023a) explores the limitations of LLMs-as-judges, including position biases, and verifies agreement between LLM judgments and human preferences across multiple benchmarks.\nThese findings underscore the need for robust debiasing strategies to enhance the fairness and reliableness of LLMs-as-judges.', 'Overconfidence bias\xa0(Khan et\xa0al., 2024; Jung et\xa0al., 2024) in the context of LLMs-as-judges refers to the tendency of models to exhibit an inflated level of confidence in their judgments, often resulting in overly assertive evaluations that may not accurately reflect the true reliability of the answer. This bias is particularly concerning in evaluative contexts, as it can lead LLMs-as-judges to overstate the correctness of certain outputs, compromising the objectivity and dependability of assessments.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.93 | | cosine_accuracy@3 | 0.99 | | cosine_accuracy@5 | 1.0 | | cosine_accuracy@10 | 1.0 | | cosine_precision@1 | 0.93 | | cosine_precision@3 | 0.33 | | cosine_precision@5 | 0.2 | | cosine_precision@10 | 0.1 | | cosine_recall@1 | 0.93 | | cosine_recall@3 | 0.99 | | cosine_recall@5 | 1.0 | | cosine_recall@10 | 1.0 | | **cosine_ndcg@10** | **0.9704** | | cosine_mrr@10 | 0.9603 | | cosine_map@100 | 0.9603 | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 1,334 training samples * Columns: sentence_0 and sentence_1 * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | sentence_0 | sentence_1 | |:------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | What are the main components of the evaluation function \( E \) as described in the preliminaries section? | LLMs-as-Judges: A Comprehensive Survey on LLM-based Evaluation Methods
















1 Introduction

2 PRELIMINARIES

2.1 Evaluation Function E𝐸Eitalic_E

2.2 Evaluation Input

2.2.1 Evaluation Type 𝒯𝒯\mathcal{T}caligraphic_T
2.2.2 Evaluation Criteria 𝒞𝒞\mathcal{C}caligraphic_C.
2.2.3 Evaluation References ℛℛ\mathcal{R}caligraphic_R.


2.3 Evaluation Output



3 Functionality


3.1 Performance Evaluation

3.1.1 Responses Evaluation
3.1.2 Model Evaluation



3.2 Model Enhancement

3.2.1 Reward Modeling During Training
3.2.2 Acting as Verifier During Inference
3.2.3 Feedback for Refinement



3.3 Data Construction

3.3.1 Data Annotation
3.3.2 Data Synthesize





4 Methodology
| | How do LLMs contribute to model enhancement according to the functionalities outlined in the survey? | LLMs-as-Judges: A Comprehensive Survey on LLM-based Evaluation Methods
















1 Introduction

2 PRELIMINARIES

2.1 Evaluation Function E𝐸Eitalic_E

2.2 Evaluation Input

2.2.1 Evaluation Type 𝒯𝒯\mathcal{T}caligraphic_T
2.2.2 Evaluation Criteria 𝒞𝒞\mathcal{C}caligraphic_C.
2.2.3 Evaluation References ℛℛ\mathcal{R}caligraphic_R.


2.3 Evaluation Output



3 Functionality


3.1 Performance Evaluation

3.1.1 Responses Evaluation
3.1.2 Model Evaluation



3.2 Model Enhancement

3.2.1 Reward Modeling During Training
3.2.2 Acting as Verifier During Inference
3.2.3 Feedback for Refinement



3.3 Data Construction

3.3.1 Data Annotation
3.3.2 Data Synthesize





4 Methodology
| | What are the different approaches discussed under the Single-LLM System methodology? | 4 Methodology


4.1 Single-LLM System

4.1.1 Prompt-based
4.1.2 Tuning-based
4.1.3 Post-processing



4.2 Multi-LLM System

4.2.1 Communication
4.2.2 Aggregation


4.3 Human-AI Collaboration System



5 Application

5.1 General
5.2 Multimodal
5.3 Medical
5.4 Legal
5.5 Financial
5.6 Education
5.7 Information Retrieval

5.8 Others

5.8.1 Soft Engineering
5.8.2 Biology
5.8.3 Social Science





6 Meta-evaluation


6.1 Benchmarks

6.1.1 Code Generation
6.1.2 Machine Translation
6.1.3 Text Summarization
6.1.4 Dialogue Generation
6.1.5 Automatic Story Generation
6.1.6 Values Alignment
6.1.7 Recommendation
6.1.8 Search
6.1.9 Comprehensive Data



6.2 Metric
| * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 50 - `per_device_eval_batch_size`: 50 - `num_train_epochs`: 10 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 50 - `per_device_eval_batch_size`: 50 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 10 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | cosine_ndcg@10 | |:------:|:----:|:--------------:| | 1.0 | 27 | 0.9697 | | 1.8519 | 50 | 0.9788 | | 2.0 | 54 | 0.9775 | | 3.0 | 81 | 0.9741 | | 3.7037 | 100 | 0.9791 | | 4.0 | 108 | 0.9741 | | 5.0 | 135 | 0.9782 | | 5.5556 | 150 | 0.9782 | | 6.0 | 162 | 0.9782 | | 7.0 | 189 | 0.9782 | | 7.4074 | 200 | 0.9741 | | 8.0 | 216 | 0.9741 | | 9.0 | 243 | 0.9704 | | 9.2593 | 250 | 0.9704 | | 10.0 | 270 | 0.9704 | ### Framework Versions - Python: 3.11.12 - Sentence Transformers: 3.4.1 - Transformers: 4.51.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.6.0 - Datasets: 2.14.4 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```