--- library_name: peft tags: - axolotl - generated_from_trainer base_model: meta-llama/Llama-2-7b-hf model-index: - name: mtext-150224_2 results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: meta-llama/Llama-2-7b-hf base_model_config: meta-llama/Llama-2-7b-hf model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: ascherrer/mtext-data-150224_2 type: completion field: text dataset_prepared_path: last_run_prepared hub_model_id: ascherrer/mtext-150224_2 val_set_size: 0.01 output_dir: ./qlora-out adapter: qlora lora_model_dir: sequence_len: 4096 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: "machine-de-textes" wandb_entity: wandb_watch: wandb_run_id: wandb_log_model: "checkpoint" lora_modules_to_save: - embed_tokens - lm_head gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 3 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 eval_steps: 20 eval_table_size: 5 save_steps: debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" tokens: # these are delimiters - "<|s|>" - "<|e|>" ```

# mtext-150224_2 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0540 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8407 | 0.42 | 20 | 2.1162 | | 1.6743 | 0.84 | 40 | 2.0768 | | 1.5006 | 1.24 | 60 | 2.0654 | | 1.5812 | 1.65 | 80 | 2.0598 | | 1.5619 | 2.05 | 100 | 2.0535 | | 1.5251 | 2.47 | 120 | 2.0537 | | 1.5473 | 2.89 | 140 | 2.0540 | ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.17.0 - Tokenizers 0.15.0