File size: 2,129 Bytes
be570f5 760673c c66dc63 760673c be570f5 c66dc63 760673c be570f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: cetusian/distilbert-ner-furniture-names-v3
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# cetusian/distilbert-ner-furniture-names-v3
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0396
- Validation Loss: 0.0888
- Train Precision: 0.9557
- Train Recall: 0.9714
- Train F1: 0.9635
- Train Accuracy: 0.9724
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 2742, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
|:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:|
| 0.1946 | 0.1260 | 0.9282 | 0.9581 | 0.9429 | 0.9572 | 0 |
| 0.0739 | 0.0931 | 0.9577 | 0.9714 | 0.9645 | 0.9708 | 1 |
| 0.0396 | 0.0888 | 0.9557 | 0.9714 | 0.9635 | 0.9724 | 2 |
### Framework versions
- Transformers 4.41.1
- TensorFlow 2.15.0
- Datasets 2.19.2
- Tokenizers 0.19.1
|