File size: 3,850 Bytes
d6ff049
 
 
59b6383
5afd5b6
59b6383
 
cddd113
59b6383
 
5afd5b6
59b6383
38eb22f
59b6383
 
 
5afd5b6
59b6383
38eb22f
59b6383
 
 
5afd5b6
 
 
 
 
 
 
 
 
 
 
59b6383
5afd5b6
59b6383
 
 
5afd5b6
59b6383
 
 
5afd5b6
59b6383
 
 
5afd5b6
59b6383
 
 
5afd5b6
59b6383
 
5afd5b6
59b6383
 
5afd5b6
59b6383
 
5afd5b6
59b6383
02820da
6b2cce6
ec1dffc
 
ae2f42a
 
 
ec1dffc
ae2f42a
ec1dffc
 
59b6383
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---

license: mit
---


# Intro
The Guzheng Performance Technique Recognition Model is trained on the GZ_IsoTech Dataset, which consists of 2,824 audio clips that showcase various Guzheng playing techniques. Of these, 2,328 clips are from a virtual sound library, and 496 clips are performed by a highly skilled professional Guzheng artist, covering the full tonal range inherent to the Guzheng instrument. The audio clips are categorized into eight different playing techniques based on the unique performance practices of the Guzheng: Vibrato (chanyin), Slide-up (shanghuayin), Slide-down (xiahuayin), Return Slide (huihuayin), Glissando (guazou, huazhi, etc.), Thumb Plucking (yaozhi), Harmonics (fanyin), and Plucking Techniques (gou, da, mo, tuo, etc.). The model utilizes feature extraction, time-domain and frequency-domain analysis, and pattern recognition to accurately identify these distinct Guzheng playing techniques. The application of this model provides strong support for the automatic recognition, digital analysis, and educational research of Guzheng performance techniques, promoting the preservation and innovation of Guzheng art.



## Demo (inference code)

<https://huggingface.co/spaces/ccmusic-database/GZ_IsoTech>



## Usage

```python

from huggingface_hub import snapshot_download

model_dir = snapshot_download("ccmusic-database/GZ_IsoTech")
```



## Maintenance

```bash

GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:ccmusic-database/GZ_IsoTech

cd GZ_IsoTech

```

## Results
|      Backbone      | Size(M) |             Mel             |     CQT     |   Chroma    |
| :----------------: | :-----: | :-------------------------: | :---------: | :---------: |
|      vit_l_16      |  304.3  | [**_0.855_**](#best-result) | **_0.824_** | **_0.770_** |
|      maxvit_t      |  30.9   |            0.763            |    0.776    |    0.642    |

|                    |         |                             |             |             |

|  resnext101_64x4d  |  83.5   |            0.713            |    0.765    |    0.639    |
|     resnet101      |  44.5   |            0.731            |    0.798    | **_0.719_** |
|    regnet_y_8gf    |  39.4   |            0.804            | **_0.807_** |    0.716    |
| shufflenet_v2_x2_0 |   7.4   |            0.702            |    0.799    |    0.665    |

| mobilenet_v3_large |   5.5   |         **_0.806_**         |    0.798    |    0.657    |



### Best result

<table>

    <tr>

        <th>Loss curve</th>

        <td><img src="https://www.modelscope.cn/models/ccmusic-database/GZ_IsoTech/resolve/master/vit_l_16_mel_2024-12-06_08-28-13/loss.jpg"></td>

    </tr>

    <tr>

        <th>Training and validation accuracy</th>

        <td><img src="https://www.modelscope.cn/models/ccmusic-database/GZ_IsoTech/resolve/master/vit_l_16_mel_2024-12-06_08-28-13/acc.jpg"></td>

    </tr>

    <tr>

        <th>Confusion matrix</th>

        <td><img src="https://www.modelscope.cn/models/ccmusic-database/GZ_IsoTech/resolve/master/vit_l_16_mel_2024-12-06_08-28-13/mat.jpg"></td>

    </tr>

</table>



## Dataset

<https://huggingface.co/datasets/ccmusic-database/GZ_IsoTech>



## Mirror

<https://www.modelscope.cn/models/ccmusic-database/GZ_IsoTech>



## Evaluation

<https://github.com/monetjoe/ccmusic_eval>



## Cite

```bibtex

@article{Zhou-2025,

  author  = {Monan Zhou and Shenyang Xu and Zhaorui Liu and Zhaowen Wang and Feng Yu and Wei Li and Baoqiang Han},

  title   = {CCMusic: An Open and Diverse Database for Chinese Music Information Retrieval Research},

  journal = {Transactions of the International Society for Music Information Retrieval},

  volume  = {8},

  number  = {1},

  pages   = {22--38},

  month   = {Mar},

  year    = {2025},

  url     = {https://doi.org/10.5334/tismir.194},

  doi     = {10.5334/tismir.194}

}

```