small fix
Browse files- modeling_lsg_camembert.py +36 -74
modeling_lsg_camembert.py
CHANGED
|
@@ -55,7 +55,8 @@ class LSGCamembertConfig(CamembertConfig):
|
|
| 55 |
|
| 56 |
if sparsity_type not in [None, "none", "norm", "lsh", "pooling", "stride", "block_stride"]:
|
| 57 |
logger.warning(
|
| 58 |
-
"[WARNING CONFIG]: sparsity_mode not in [None, 'none', 'norm', 'lsh', 'pooling', 'stride', 'block_stride'],
|
|
|
|
| 59 |
self.sparsity_type = None
|
| 60 |
|
| 61 |
if self.sparsity_type in ["stride", "block_stride"]:
|
|
@@ -71,7 +72,7 @@ class LSGCamembertConfig(CamembertConfig):
|
|
| 71 |
self.num_global_tokens = 1
|
| 72 |
elif self.num_global_tokens > 512:
|
| 73 |
logger.warning(
|
| 74 |
-
"[WARNING CONFIG]: num_global_tokens > 512 is not
|
| 75 |
)
|
| 76 |
self.num_global_tokens = 512
|
| 77 |
|
|
@@ -79,6 +80,16 @@ class LSGCamembertConfig(CamembertConfig):
|
|
| 79 |
assert self.block_size % self.sparsity_factor == 0, "[ERROR CONFIG]: block_size must be divisible by sparsity_factor"
|
| 80 |
assert self.block_size//self.sparsity_factor >= 1, "[ERROR CONFIG]: make sure block_size >= sparsity_factor"
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
class BaseSelfAttention(nn.Module):
|
| 84 |
|
|
@@ -436,39 +447,13 @@ class LSGCamembertEmbeddings(RobertaEmbeddings):
|
|
| 436 |
return embeddings
|
| 437 |
|
| 438 |
|
| 439 |
-
class LSGCamembertSelfOutput(RobertaSelfOutput):
|
| 440 |
-
|
| 441 |
-
def __init__(self, config):
|
| 442 |
-
super().__init__(config)
|
| 443 |
-
|
| 444 |
-
|
| 445 |
class LSGAttention(RobertaAttention):
|
| 446 |
|
| 447 |
def __init__(self, config):
|
| 448 |
|
| 449 |
-
|
| 450 |
|
| 451 |
self.self = LSGSelfAttention(config)
|
| 452 |
-
self.output = LSGCamembertSelfOutput(config)
|
| 453 |
-
self.pruned_heads = set()
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
class LSGCamembertIntermediate(RobertaIntermediate):
|
| 457 |
-
|
| 458 |
-
def __init__(self, config):
|
| 459 |
-
super().__init__(config)
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
class LSGCamembertOutput(RobertaOutput):
|
| 463 |
-
|
| 464 |
-
def __init__(self, config):
|
| 465 |
-
super().__init__(config)
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
class LSGCamembertPooler(RobertaPooler):
|
| 469 |
-
|
| 470 |
-
def __init__(self, config):
|
| 471 |
-
super().__init__(config)
|
| 472 |
|
| 473 |
|
| 474 |
class LSGSelfAttention(BaseSelfAttention):
|
|
@@ -898,29 +883,21 @@ class LSGCamembertLayer(RobertaLayer):
|
|
| 898 |
|
| 899 |
def __init__(self, config):
|
| 900 |
|
| 901 |
-
|
| 902 |
|
| 903 |
-
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
| 904 |
-
self.seq_len_dim = 1
|
| 905 |
self.attention = LSGAttention(config)
|
| 906 |
-
self.is_decoder = config.is_decoder
|
| 907 |
-
self.add_cross_attention = config.add_cross_attention
|
| 908 |
if self.add_cross_attention:
|
| 909 |
assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
|
| 910 |
self.crossattention = LSGAttention(config)
|
| 911 |
-
self.intermediate = LSGCamembertIntermediate(config)
|
| 912 |
-
self.output = LSGCamembertOutput(config)
|
| 913 |
|
| 914 |
|
| 915 |
class LSGCamembertEncoder(RobertaEncoder):
|
| 916 |
|
| 917 |
def __init__(self, config):
|
| 918 |
|
| 919 |
-
|
| 920 |
|
| 921 |
-
self.config = config
|
| 922 |
self.layer = nn.ModuleList([LSGCamembertLayer(config) for _ in range(config.num_hidden_layers)])
|
| 923 |
-
self.gradient_checkpointing = False
|
| 924 |
|
| 925 |
|
| 926 |
class LSGCamembertPreTrainedModel(RobertaPreTrainedModel):
|
|
@@ -945,7 +922,7 @@ class LSGCamembertModel(LSGCamembertPreTrainedModel, RobertaModel):
|
|
| 945 |
config_class = LSGCamembertConfig
|
| 946 |
|
| 947 |
|
| 948 |
-
def __init__(self, config, add_pooling_layer=
|
| 949 |
|
| 950 |
LSGCamembertPreTrainedModel.__init__(self, config)
|
| 951 |
|
|
@@ -961,7 +938,7 @@ class LSGCamembertModel(LSGCamembertPreTrainedModel, RobertaModel):
|
|
| 961 |
|
| 962 |
self.embeddings = LSGCamembertEmbeddings(config)
|
| 963 |
self.encoder = LSGCamembertEncoder(config)
|
| 964 |
-
self.pooler =
|
| 965 |
|
| 966 |
if config.add_cross_attention:
|
| 967 |
logger.warning(
|
|
@@ -988,6 +965,12 @@ class LSGCamembertModel(LSGCamembertPreTrainedModel, RobertaModel):
|
|
| 988 |
return_dict=None
|
| 989 |
):
|
| 990 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 991 |
inputs_ = input_ids if input_ids is not None else inputs_embeds
|
| 992 |
n, t = inputs_.size()[:2]
|
| 993 |
|
|
@@ -1032,33 +1015,26 @@ class LSGCamembertModel(LSGCamembertPreTrainedModel, RobertaModel):
|
|
| 1032 |
return_dict=return_dict
|
| 1033 |
)
|
| 1034 |
|
| 1035 |
-
|
| 1036 |
if self.pool_with_global:
|
| 1037 |
-
|
| 1038 |
|
| 1039 |
diff = t - t_
|
| 1040 |
-
n, _, d =
|
| 1041 |
-
|
| 1042 |
|
| 1043 |
# Adapt sequence to initial shape
|
| 1044 |
if diff < 0:
|
| 1045 |
-
|
| 1046 |
|
| 1047 |
-
encoder_outputs.last_hidden_state = context
|
| 1048 |
-
sequence_output = encoder_outputs[0]
|
| 1049 |
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
| 1050 |
|
| 1051 |
if not return_dict:
|
| 1052 |
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
| 1053 |
-
|
| 1054 |
-
|
| 1055 |
-
|
| 1056 |
-
|
| 1057 |
-
past_key_values=encoder_outputs.past_key_values,
|
| 1058 |
-
hidden_states=encoder_outputs.hidden_states,
|
| 1059 |
-
attentions=encoder_outputs.attentions,
|
| 1060 |
-
cross_attentions=encoder_outputs.cross_attentions,
|
| 1061 |
-
)
|
| 1062 |
|
| 1063 |
def get_extended_attention_mask(self, attention_mask, input_shape, device=None):
|
| 1064 |
|
|
@@ -1092,7 +1068,7 @@ class LSGCamembertForCausalLM(LSGCamembertPreTrainedModel, RobertaForCausalLM):
|
|
| 1092 |
logger.warning("If you want to use `LSGCamembertLMHeadModel` as a standalone, add `is_decoder=True.`")
|
| 1093 |
|
| 1094 |
self.roberta = LSGCamembertModel(config, add_pooling_layer=False)
|
| 1095 |
-
self.lm_head =
|
| 1096 |
|
| 1097 |
# The LM head weights require special treatment only when they are tied with the word embeddings
|
| 1098 |
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
|
|
@@ -1122,7 +1098,7 @@ class LSGCamembertForMaskedLM(LSGCamembertPreTrainedModel, RobertaForMaskedLM):
|
|
| 1122 |
)
|
| 1123 |
|
| 1124 |
self.roberta = LSGCamembertModel(config, add_pooling_layer=False)
|
| 1125 |
-
self.lm_head =
|
| 1126 |
|
| 1127 |
# The LM head weights require special treatment only when they are tied with the word embeddings
|
| 1128 |
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
|
|
@@ -1131,13 +1107,6 @@ class LSGCamembertForMaskedLM(LSGCamembertPreTrainedModel, RobertaForMaskedLM):
|
|
| 1131 |
self.post_init()
|
| 1132 |
|
| 1133 |
|
| 1134 |
-
class LSGCamembertLMHead(RobertaLMHead):
|
| 1135 |
-
"""LSG Head for masked language modeling."""
|
| 1136 |
-
|
| 1137 |
-
def __init__(self, config):
|
| 1138 |
-
super().__init__(config)
|
| 1139 |
-
|
| 1140 |
-
|
| 1141 |
class LSGCamembertForSequenceClassification(LSGCamembertPreTrainedModel, RobertaForSequenceClassification):
|
| 1142 |
"""
|
| 1143 |
This class overrides :class:`~transformers.CamembertForSequenceClassification`. Please check the superclass for the
|
|
@@ -1154,19 +1123,12 @@ class LSGCamembertForSequenceClassification(LSGCamembertPreTrainedModel, Roberta
|
|
| 1154 |
self.config = config
|
| 1155 |
|
| 1156 |
self.roberta = LSGCamembertModel(config, add_pooling_layer=False)
|
| 1157 |
-
self.classifier =
|
| 1158 |
|
| 1159 |
# Initialize weights and apply final processing
|
| 1160 |
self.post_init()
|
| 1161 |
|
| 1162 |
|
| 1163 |
-
class LSGCamembertClassificationHead(RobertaClassificationHead):
|
| 1164 |
-
"""Head for sentence-level classification tasks."""
|
| 1165 |
-
|
| 1166 |
-
def __init__(self, config):
|
| 1167 |
-
super().__init__(config)
|
| 1168 |
-
|
| 1169 |
-
|
| 1170 |
class LSGCamembertForMultipleChoice(LSGCamembertPreTrainedModel, RobertaForMultipleChoice):
|
| 1171 |
"""
|
| 1172 |
This class overrides :class:`~transformers.CamembertForMultipleChoice`. Please check the superclass for the
|
|
|
|
| 55 |
|
| 56 |
if sparsity_type not in [None, "none", "norm", "lsh", "pooling", "stride", "block_stride"]:
|
| 57 |
logger.warning(
|
| 58 |
+
"[WARNING CONFIG]: sparsity_mode not in [None, 'none', 'norm', 'lsh', 'pooling', 'stride', 'block_stride'], \
|
| 59 |
+
setting sparsity_type=None, computation will skip sparse attention")
|
| 60 |
self.sparsity_type = None
|
| 61 |
|
| 62 |
if self.sparsity_type in ["stride", "block_stride"]:
|
|
|
|
| 72 |
self.num_global_tokens = 1
|
| 73 |
elif self.num_global_tokens > 512:
|
| 74 |
logger.warning(
|
| 75 |
+
"[WARNING CONFIG]: num_global_tokens > 512 is not allowed, setting num_global_tokens=512"
|
| 76 |
)
|
| 77 |
self.num_global_tokens = 512
|
| 78 |
|
|
|
|
| 80 |
assert self.block_size % self.sparsity_factor == 0, "[ERROR CONFIG]: block_size must be divisible by sparsity_factor"
|
| 81 |
assert self.block_size//self.sparsity_factor >= 1, "[ERROR CONFIG]: make sure block_size >= sparsity_factor"
|
| 82 |
|
| 83 |
+
if self.mask_first_token and not pool_with_global:
|
| 84 |
+
logger.warning(
|
| 85 |
+
"[WARNING CONFIG]: pool_with_global==False is not compatible with mask_first_token==True. Setting pool_with_global to True.")
|
| 86 |
+
self.pool_with_global = True
|
| 87 |
+
|
| 88 |
+
if hasattr(self, "position_embedding_type"):
|
| 89 |
+
if self.position_embedding_type != "absolute":
|
| 90 |
+
logger.warning(
|
| 91 |
+
"[WARNING CONFIG]: LSG Attention is not compatible with relative positional embedding and will skip its computation. Set position_embedding_type='absolute' to remove this warning.")
|
| 92 |
+
|
| 93 |
|
| 94 |
class BaseSelfAttention(nn.Module):
|
| 95 |
|
|
|
|
| 447 |
return embeddings
|
| 448 |
|
| 449 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 450 |
class LSGAttention(RobertaAttention):
|
| 451 |
|
| 452 |
def __init__(self, config):
|
| 453 |
|
| 454 |
+
super().__init__(config)
|
| 455 |
|
| 456 |
self.self = LSGSelfAttention(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 457 |
|
| 458 |
|
| 459 |
class LSGSelfAttention(BaseSelfAttention):
|
|
|
|
| 883 |
|
| 884 |
def __init__(self, config):
|
| 885 |
|
| 886 |
+
super().__init__(config)
|
| 887 |
|
|
|
|
|
|
|
| 888 |
self.attention = LSGAttention(config)
|
|
|
|
|
|
|
| 889 |
if self.add_cross_attention:
|
| 890 |
assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
|
| 891 |
self.crossattention = LSGAttention(config)
|
|
|
|
|
|
|
| 892 |
|
| 893 |
|
| 894 |
class LSGCamembertEncoder(RobertaEncoder):
|
| 895 |
|
| 896 |
def __init__(self, config):
|
| 897 |
|
| 898 |
+
super().__init__(config)
|
| 899 |
|
|
|
|
| 900 |
self.layer = nn.ModuleList([LSGCamembertLayer(config) for _ in range(config.num_hidden_layers)])
|
|
|
|
| 901 |
|
| 902 |
|
| 903 |
class LSGCamembertPreTrainedModel(RobertaPreTrainedModel):
|
|
|
|
| 922 |
config_class = LSGCamembertConfig
|
| 923 |
|
| 924 |
|
| 925 |
+
def __init__(self, config, add_pooling_layer=True):
|
| 926 |
|
| 927 |
LSGCamembertPreTrainedModel.__init__(self, config)
|
| 928 |
|
|
|
|
| 938 |
|
| 939 |
self.embeddings = LSGCamembertEmbeddings(config)
|
| 940 |
self.encoder = LSGCamembertEncoder(config)
|
| 941 |
+
self.pooler = RobertaPooler(config) if add_pooling_layer else None
|
| 942 |
|
| 943 |
if config.add_cross_attention:
|
| 944 |
logger.warning(
|
|
|
|
| 965 |
return_dict=None
|
| 966 |
):
|
| 967 |
|
| 968 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 969 |
+
output_hidden_states = (
|
| 970 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 971 |
+
)
|
| 972 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 973 |
+
|
| 974 |
inputs_ = input_ids if input_ids is not None else inputs_embeds
|
| 975 |
n, t = inputs_.size()[:2]
|
| 976 |
|
|
|
|
| 1015 |
return_dict=return_dict
|
| 1016 |
)
|
| 1017 |
|
| 1018 |
+
sequence_output = encoder_outputs[0]
|
| 1019 |
if self.pool_with_global:
|
| 1020 |
+
sequence_output[:, self.num_global_tokens] = sequence_output[:, 0]
|
| 1021 |
|
| 1022 |
diff = t - t_
|
| 1023 |
+
n, _, d = sequence_output.size()
|
| 1024 |
+
sequence_output = sequence_output[..., self.num_global_tokens:, :]
|
| 1025 |
|
| 1026 |
# Adapt sequence to initial shape
|
| 1027 |
if diff < 0:
|
| 1028 |
+
sequence_output = sequence_output[:, :t]
|
| 1029 |
|
|
|
|
|
|
|
| 1030 |
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
| 1031 |
|
| 1032 |
if not return_dict:
|
| 1033 |
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
| 1034 |
+
|
| 1035 |
+
encoder_outputs.last_hidden_state = sequence_output
|
| 1036 |
+
encoder_outputs.pooler_output = pooled_output
|
| 1037 |
+
return encoder_outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1038 |
|
| 1039 |
def get_extended_attention_mask(self, attention_mask, input_shape, device=None):
|
| 1040 |
|
|
|
|
| 1068 |
logger.warning("If you want to use `LSGCamembertLMHeadModel` as a standalone, add `is_decoder=True.`")
|
| 1069 |
|
| 1070 |
self.roberta = LSGCamembertModel(config, add_pooling_layer=False)
|
| 1071 |
+
self.lm_head = RobertaLMHead(config)
|
| 1072 |
|
| 1073 |
# The LM head weights require special treatment only when they are tied with the word embeddings
|
| 1074 |
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
|
|
|
|
| 1098 |
)
|
| 1099 |
|
| 1100 |
self.roberta = LSGCamembertModel(config, add_pooling_layer=False)
|
| 1101 |
+
self.lm_head = RobertaLMHead(config)
|
| 1102 |
|
| 1103 |
# The LM head weights require special treatment only when they are tied with the word embeddings
|
| 1104 |
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
|
|
|
|
| 1107 |
self.post_init()
|
| 1108 |
|
| 1109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1110 |
class LSGCamembertForSequenceClassification(LSGCamembertPreTrainedModel, RobertaForSequenceClassification):
|
| 1111 |
"""
|
| 1112 |
This class overrides :class:`~transformers.CamembertForSequenceClassification`. Please check the superclass for the
|
|
|
|
| 1123 |
self.config = config
|
| 1124 |
|
| 1125 |
self.roberta = LSGCamembertModel(config, add_pooling_layer=False)
|
| 1126 |
+
self.classifier = RobertaClassificationHead(config)
|
| 1127 |
|
| 1128 |
# Initialize weights and apply final processing
|
| 1129 |
self.post_init()
|
| 1130 |
|
| 1131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1132 |
class LSGCamembertForMultipleChoice(LSGCamembertPreTrainedModel, RobertaForMultipleChoice):
|
| 1133 |
"""
|
| 1134 |
This class overrides :class:`~transformers.CamembertForMultipleChoice`. Please check the superclass for the
|