cavargas10 commited on
Commit
f72d529
·
verified ·
1 Parent(s): a850d89

Upload 22 files

Browse files
.gitattributes CHANGED
@@ -1,35 +1,53 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ 000283_scribble_concat.webp filter=lfs diff=lfs merge=lfs -text
37
+ masonry.webp filter=lfs diff=lfs merge=lfs -text
38
+ masonry2.webp filter=lfs diff=lfs merge=lfs -text
39
+ 000028_scribble_concat_canny.webp filter=lfs diff=lfs merge=lfs -text
40
+ 000028_scribble_concat_hed.webp filter=lfs diff=lfs merge=lfs -text
41
+ 000028_scribble_concat_lineart.webp filter=lfs diff=lfs merge=lfs -text
42
+ 000028_scribble_concat_pidi.webp filter=lfs diff=lfs merge=lfs -text
43
+ 000028_scribble_concat.webp filter=lfs diff=lfs merge=lfs -text
44
+ 000155_scribble_concat.webp filter=lfs diff=lfs merge=lfs -text
45
+ 000186_scribble_concat.webp filter=lfs diff=lfs merge=lfs -text
46
+ 000210_scribble_concat.webp filter=lfs diff=lfs merge=lfs -text
47
+ 000227_scribble_concat.webp filter=lfs diff=lfs merge=lfs -text
48
+ 000242_scribble_concat.webp filter=lfs diff=lfs merge=lfs -text
49
+ 000250_scribble_concat.webp filter=lfs diff=lfs merge=lfs -text
50
+ 000256_scribble_concat.webp filter=lfs diff=lfs merge=lfs -text
51
+ 000271_scribble_concat.webp filter=lfs diff=lfs merge=lfs -text
52
+ 000285_scribble_concat.webp filter=lfs diff=lfs merge=lfs -text
53
+ 000290_scribble_concat.webp filter=lfs diff=lfs merge=lfs -text
000028_scribble_concat.webp ADDED

Git LFS Details

  • SHA256: b6b40c000d3ac6e7b3dd2ac9d548674e71fc8ebfe735177b14900513479d85b6
  • Pointer size: 131 Bytes
  • Size of remote file: 219 kB
000028_scribble_concat_canny.webp ADDED

Git LFS Details

  • SHA256: 2955072aa48e31cead9c399a2cd50b69bf8a61f189ad2a53d9496683f34ed6ea
  • Pointer size: 131 Bytes
  • Size of remote file: 313 kB
000028_scribble_concat_hed.webp ADDED

Git LFS Details

  • SHA256: f1993b4d902595eea87e92f462ed7f1b70ec12c617496e4d88e2cda6de5b5c83
  • Pointer size: 131 Bytes
  • Size of remote file: 266 kB
000028_scribble_concat_lineart.webp ADDED

Git LFS Details

  • SHA256: 34ed02d35e6fdce87ee1fd25fd4ab12199df843636c634557a61a11f10ced614
  • Pointer size: 131 Bytes
  • Size of remote file: 428 kB
000028_scribble_concat_pidi.webp ADDED

Git LFS Details

  • SHA256: ab2e9eb48f05167e50136ffec990ba60df2ed5a67eff8358a2db5e34f6709b34
  • Pointer size: 131 Bytes
  • Size of remote file: 260 kB
000155_scribble_concat.webp ADDED

Git LFS Details

  • SHA256: e670c293055d5069ee62cb4cbd290d04cfcdbfc9e5102f7a4652751dca79ce56
  • Pointer size: 131 Bytes
  • Size of remote file: 409 kB
000186_scribble_concat.webp ADDED

Git LFS Details

  • SHA256: 88e44fcb6a046fc1a9a8de3a82aa756200ce219d0dbbed1a3ac556d088e80ee6
  • Pointer size: 131 Bytes
  • Size of remote file: 700 kB
000210_scribble_concat.webp ADDED

Git LFS Details

  • SHA256: 138a032b8cea5c9112db57ac2276c1994235d5a7a298c70d7e200e314ac1c959
  • Pointer size: 131 Bytes
  • Size of remote file: 141 kB
000227_scribble_concat.webp ADDED

Git LFS Details

  • SHA256: a41cd8cd1b5450ea1894bb87f8139384da43c61e3df3bd0455e401a3b0cc229c
  • Pointer size: 131 Bytes
  • Size of remote file: 414 kB
000242_scribble_concat.webp ADDED

Git LFS Details

  • SHA256: e566f426554a8fb12ac9e4ef823d1b7099f9c2a1aa1cf7bc0b6d124c50748ae7
  • Pointer size: 131 Bytes
  • Size of remote file: 158 kB
000250_scribble_concat.webp ADDED

Git LFS Details

  • SHA256: cdad7a0ef9d3966b6b7f40e8de5f433abfdb493176fc65a303801646cd0aa060
  • Pointer size: 131 Bytes
  • Size of remote file: 164 kB
000256_scribble_concat.webp ADDED

Git LFS Details

  • SHA256: 3c1d2e965175150db30b650b4a4005b19b1c9cbb55dd32776992457c192983a5
  • Pointer size: 131 Bytes
  • Size of remote file: 445 kB
000271_scribble_concat.webp ADDED

Git LFS Details

  • SHA256: cea5c6d5c3caf4cafb9d6b5b4da8faa3d081648b345eacbbac91e9783d2c09f5
  • Pointer size: 131 Bytes
  • Size of remote file: 419 kB
000283_scribble_concat.webp ADDED

Git LFS Details

  • SHA256: 17e44db401dc62516d71b2a033271c5187ed0b0179bbc560158a99cff3d999be
  • Pointer size: 132 Bytes
  • Size of remote file: 1.03 MB
000285_scribble_concat.webp ADDED

Git LFS Details

  • SHA256: d3e26746a78f22cc5b0ce15df63a6a6e31f39127365be63815b1be5f51c81da1
  • Pointer size: 131 Bytes
  • Size of remote file: 479 kB
000290_scribble_concat.webp ADDED

Git LFS Details

  • SHA256: 43229ff959cab43b7bb9e5ab12177d26e0bf8df6007a7133842a640eb444275c
  • Pointer size: 131 Bytes
  • Size of remote file: 278 kB
README.md CHANGED
@@ -1,3 +1,207 @@
1
  ---
2
  license: apache-2.0
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ pipeline_tag: text-to-image
4
  ---
5
+
6
+ # **This is an anyline model that can generate images comparable with midjourney and support any line type and any width!**
7
+ The following five lines are using different control lines, from top to below, Scribble, Canny, HED, PIDI, Lineart
8
+ ![image](./000028_scribble_concat.webp)
9
+ ![image](./000028_scribble_concat_canny.webp)
10
+ ![image](./000028_scribble_concat_hed.webp)
11
+ ![image](./000028_scribble_concat_pidi.webp)
12
+ ![image](./000028_scribble_concat_lineart.webp)
13
+
14
+
15
+ # **General Scribble model that can generate images comparable with midjourney!**
16
+ ![image](./masonry.webp)
17
+
18
+
19
+ # Controlnet-Scribble-Sdxl-1.0
20
+
21
+ <!-- Provide a quick summary of what the model is/does. -->
22
+
23
+ Hello, I am very happy to announce the controlnet-scribble-sdxl-1.0 model, **a very powerful controlnet that can generate high resolution images visually comparable with midjourney**.
24
+ The model was trained with large amount of high quality data(over 10000000 images), with carefully filtered and captioned(powerful vllm model). Besides, useful tricks are applied
25
+ during the training, including date augmentation, mutiple loss and multi resolution. Note that this model can achieve higher aesthetic performance than our Controlnet-Canny-Sdxl-1.0 model,
26
+ the model support any type of lines and any width of lines, the sketch can be very simple and so does the prompt. This model is more general and good at generate visual appealing images,
27
+ The control ability is also strong, for example if you are unstatisfied with some local regions about the generated image, draw a more precise sketch and give a detail prompt will help a lot.
28
+ **Note the model also support lineart or canny lines, you can try it and will get a surpurise!!!**
29
+
30
+
31
+ ## Model Details
32
+
33
+
34
+ ### Model Description
35
+
36
+ <!-- Provide a longer summary of what this model is. -->
37
+
38
+ - **Developed by:** xinsir
39
+ - **Model type:** ControlNet_SDXL
40
+ - **License:** apache-2.0
41
+ - **Finetuned from model [optional]:** stabilityai/stable-diffusion-xl-base-1.0
42
+
43
+ ### Model Sources [optional]
44
+
45
+ <!-- Provide the basic links for the model. -->
46
+
47
+ - **Paper [optional]:** https://arxiv.org/abs/2302.05543
48
+
49
+ ### Examples[**Note the following examples are all generate using stabilityai/stable-diffusion-xl-base-1.0 and xinsir/controlnet-scribble-sdxl-1.0**]
50
+ prompt: purple feathered eagle with specks of light like stars in feathers. It glows with arcane power
51
+ ![image1](./000155_scribble_concat.webp)
52
+ prompt: manga girl in the city, drip marketing
53
+ ![image2](./000186_scribble_concat.webp)
54
+ prompt: 17 year old girl with long dark hair in the style of realism with fantasy elements, detailed botanical illustrations, barbs and thorns, ethereal, magical, black, purple and maroon, intricate, photorealistic
55
+ ![image3](./000210_scribble_concat.webp)
56
+ prompt: a logo for a paintball field named district 7 on a white background featuring paintballs the is bright and colourful eye catching and impactuful
57
+ ![image4](./000227_scribble_concat.webp)
58
+ prompt: a photograph of a handsome crying blonde man with his face painted in the pride flag
59
+ ![image5](./000242_scribble_concat.webp)
60
+ prompt: simple flat sketch fox play ball
61
+ ![image6](./000250_scribble_concat.webp)
62
+ prompt: concept art, a surreal magical Tome of the Sun God, the book binding appears to be made of solar fire and emits a holy, radiant glow, Age of Wonders, Unreal Engine v5
63
+ ![image7](./000256_scribble_concat.webp)
64
+ prompt: black Caribbean man walking balance front his fate chaos anarchy liberty independence force energy independence cinematic surreal beautiful rendition intricate sharp detail 8k
65
+ ![image8](./000271_scribble_concat.webp)
66
+ prompt: die hard nakatomi plaza, explosion at the top, vector, night scene
67
+ ![image9](./000285_scribble_concat.webp)
68
+ prompt: solitary glowing yellow tree in a desert. ultra wide shot. night time. hdr photography
69
+ ![image10](./000290_scribble_concat.webp)
70
+
71
+
72
+ ## How to Get Started with the Model
73
+
74
+ Use the code below to get started with the model.
75
+
76
+ ```python
77
+ from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
78
+ from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
79
+ from controlnet_aux import PidiNetDetector, HEDdetector
80
+ from diffusers.utils import load_image
81
+ from huggingface_hub import HfApi
82
+ from pathlib import Path
83
+ from PIL import Image
84
+ import torch
85
+ import numpy as np
86
+ import cv2
87
+ import os
88
+
89
+
90
+ def nms(x, t, s):
91
+ x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
92
+
93
+ f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
94
+ f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
95
+ f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
96
+ f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
97
+
98
+ y = np.zeros_like(x)
99
+
100
+ for f in [f1, f2, f3, f4]:
101
+ np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
102
+
103
+ z = np.zeros_like(y, dtype=np.uint8)
104
+ z[y > t] = 255
105
+ return z
106
+
107
+
108
+ controlnet_conditioning_scale = 1.0
109
+ prompt = "your prompt, the longer the better, you can describe it as detail as possible"
110
+ negative_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
111
+
112
+
113
+ eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler")
114
+
115
+
116
+ controlnet = ControlNetModel.from_pretrained(
117
+ "xinsir/controlnet-scribble-sdxl-1.0",
118
+ torch_dtype=torch.float16
119
+ )
120
+
121
+ # when test with other base model, you need to change the vae also.
122
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
123
+
124
+ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
125
+ "stabilityai/stable-diffusion-xl-base-1.0",
126
+ controlnet=controlnet,
127
+ vae=vae,
128
+ safety_checker=None,
129
+ torch_dtype=torch.float16,
130
+ scheduler=eulera_scheduler,
131
+ )
132
+
133
+ # you can use either hed to generate a fake scribble given an image or a sketch image totally draw by yourself
134
+
135
+ if random.random() > 0.5:
136
+ # Method 1
137
+ # if you use hed, you should provide an image, the image can be real or anime, you extract its hed lines and use it as the scribbles
138
+ # The detail about hed detect you can refer to https://github.com/lllyasviel/ControlNet/blob/main/gradio_fake_scribble2image.py
139
+ # Below is a example using diffusers HED detector
140
+
141
+ # image_path = Image.open("your image path, the image can be real or anime, HED detector will extract its edge boundery")
142
+ image_path = cv2.imread("your image path, the image can be real or anime, HED detector will extract its edge boundery")
143
+ processor = HEDdetector.from_pretrained('lllyasviel/Annotators')
144
+ controlnet_img = processor(image_path, scribble=False)
145
+ controlnet_img.save("a hed detect path for an image")
146
+
147
+ # following is some processing to simulate human sketch draw, different threshold can generate different width of lines
148
+ controlnet_img = np.array(controlnet_img)
149
+ controlnet_img = nms(controlnet_img, 127, 3)
150
+ controlnet_img = cv2.GaussianBlur(controlnet_img, (0, 0), 3)
151
+
152
+ # higher threshold, thiner line
153
+ random_val = int(round(random.uniform(0.01, 0.10), 2) * 255)
154
+ controlnet_img[controlnet_img > random_val] = 255
155
+ controlnet_img[controlnet_img < 255] = 0
156
+ controlnet_img = Image.fromarray(controlnet_img)
157
+
158
+ else:
159
+ # Method 2
160
+ # if you use a sketch image total draw by yourself
161
+ control_path = "the sketch image you draw with some tools, like drawing board, the path you save it"
162
+ controlnet_img = Image.open(control_path) # Note that the image must be black-white(0 or 255), like the examples we list
163
+
164
+ # must resize to 1024*1024 or same resolution bucket to get the best performance
165
+ width, height = controlnet_img.size
166
+ ratio = np.sqrt(1024. * 1024. / (width * height))
167
+ new_width, new_height = int(width * ratio), int(height * ratio)
168
+ controlnet_img = controlnet_img.resize((new_width, new_height))
169
+
170
+ images = pipe(
171
+ prompt,
172
+ negative_prompt=negative_prompt,
173
+ image=controlnet_img,
174
+ controlnet_conditioning_scale=controlnet_conditioning_scale,
175
+ width=new_width,
176
+ height=new_height,
177
+ num_inference_steps=30,
178
+ ).images
179
+
180
+ images[0].save(f"your image save path, png format is usually better than jpg or webp in terms of image quality but got much bigger")
181
+ ```
182
+
183
+ ## Evaluation Data
184
+ The test data is randomly sample from midjourney upscale images with prompts, as the purpose of the project is to letting people draw images like midjourney. midjourney’s users include a large number of professional designers,
185
+ and the upscale image tend to have more beauty score and prompt consistency, it is suitable to use it as the test set to judge the ability of controlnet. We select 300 prompt-image pairs randomly and generate 4 images per prompt,
186
+ totally 1200 images generated. We caculate the Laion Aesthetic Score to measure the beauty and the PerceptualSimilarity to measure the control ability, we find the quality of images have a good consistency with the meric values.
187
+ We compare our methods with other SOTA huggingface models and list the result below. We are the models that have highest aesthectic score, and can generate visually appealing images if you prompt it properly.
188
+
189
+ Note: The condition image are generated using HED detector and random threshold to generate different kinds of lines.
190
+
191
+ ## Quantitative Result
192
+ | metric | xinsir/controlnet-scribble-sdxl-1.0 |
193
+ |-------|-------|
194
+ | laion_aesthetic | **6.03** |
195
+ | perceptual similarity | 0.5701 |
196
+
197
+ laion_aesthetic(the higher the better)
198
+ perceptual similarity(the lower the better)
199
+
200
+ Note: The values are caculated when save in webp format, when save in png the aesthetic values will increase 0.1-0.3, but the relative relation remains unchanged.
201
+
202
+ ### Conclusion
203
+
204
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
205
+ In our evaluation, the model can generate visually appealing images using simple sketch and simple prompt. This model can support any type of lines and any width of lines, using thick line will give a coarse control
206
+ which obey the prompt your write more, and using thick line will give a strong control which obey the condition image more. The model can help you complish the drawing from coarse to fine, the model achieves higher
207
+ aesthetic score than xinsir/controlnet-canny-sdxl-1.0, but the control ability will decrease a bit because of thick line.
config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "ControlNetModel",
3
+ "_diffusers_version": "0.20.0.dev0",
4
+ "act_fn": "silu",
5
+ "addition_embed_type": "text_time",
6
+ "addition_embed_type_num_heads": 64,
7
+ "addition_time_embed_dim": 256,
8
+ "attention_head_dim": [
9
+ 5,
10
+ 10,
11
+ 20
12
+ ],
13
+ "block_out_channels": [
14
+ 320,
15
+ 640,
16
+ 1280
17
+ ],
18
+ "class_embed_type": null,
19
+ "conditioning_channels": 3,
20
+ "conditioning_embedding_out_channels": [
21
+ 16,
22
+ 32,
23
+ 96,
24
+ 256
25
+ ],
26
+ "controlnet_conditioning_channel_order": "rgb",
27
+ "cross_attention_dim": 2048,
28
+ "down_block_types": [
29
+ "DownBlock2D",
30
+ "CrossAttnDownBlock2D",
31
+ "CrossAttnDownBlock2D"
32
+ ],
33
+ "downsample_padding": 1,
34
+ "encoder_hid_dim": null,
35
+ "encoder_hid_dim_type": null,
36
+ "flip_sin_to_cos": true,
37
+ "freq_shift": 0,
38
+ "global_pool_conditions": false,
39
+ "in_channels": 4,
40
+ "layers_per_block": 2,
41
+ "mid_block_scale_factor": 1,
42
+ "norm_eps": 1e-05,
43
+ "norm_num_groups": 32,
44
+ "num_attention_heads": null,
45
+ "num_class_embeds": null,
46
+ "only_cross_attention": false,
47
+ "projection_class_embeddings_input_dim": 2816,
48
+ "resnet_time_scale_shift": "default",
49
+ "transformer_layers_per_block": [
50
+ 1,
51
+ 2,
52
+ 10
53
+ ],
54
+ "upcast_attention": null,
55
+ "use_linear_projection": true
56
+ }
diffusion_pytorch_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3e4ac47bc814019d50dc842f579301440deb6d8f09ee1b91a30f527ace1b852
3
+ size 2502139104
masonry.webp ADDED

Git LFS Details

  • SHA256: 386e8b5f429c6e3066924d4c91ba7c702d78e2108497dd53d25480168abdbd43
  • Pointer size: 132 Bytes
  • Size of remote file: 3.4 MB
masonry2.webp ADDED

Git LFS Details

  • SHA256: e54b5a7b245ebf03c0f2be056decd958c47d4e1351bd209675302a4d15021013
  • Pointer size: 132 Bytes
  • Size of remote file: 1.91 MB