PEFT
English
MrLight commited on
Commit
76f204b
·
1 Parent(s): eab618d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -4
README.md CHANGED
@@ -10,6 +10,11 @@ Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, Jimmy Lin, arXiv 2023
10
 
11
  This model is fine-tuned from LLaMA-2-7B using LoRA for passage reranking.
12
 
 
 
 
 
 
13
  ## Usage
14
 
15
  Below is an example to compute the similarity score of a query-passage pair
@@ -31,13 +36,13 @@ def get_model(peft_model_name):
31
  tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf')
32
  model = get_model('castorini/rankllama-v1-7b-lora-passage')
33
 
34
- # Define a query-document pair
35
  query = "What is llama?"
36
  title = "Llama"
37
- document = "The llama is a domesticated South American camelid, widely used as a meat and pack animal by Andean cultures since the pre-Columbian era."
38
 
39
- # Tokenize the query-document pair
40
- inputs = tokenizer(f'query: {query}', f'document: {title} {document}</s>', return_tensors='pt')
41
 
42
  # Run the model forward
43
  with torch.no_grad():
 
10
 
11
  This model is fine-tuned from LLaMA-2-7B using LoRA for passage reranking.
12
 
13
+ ## Training Data
14
+ The model is fine-tuned on the training split of [MS MARCO Passage Ranking](https://microsoft.github.io/msmarco/Datasets) datasets for 1 epoch.
15
+ Please check our paper for details.
16
+
17
+
18
  ## Usage
19
 
20
  Below is an example to compute the similarity score of a query-passage pair
 
36
  tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf')
37
  model = get_model('castorini/rankllama-v1-7b-lora-passage')
38
 
39
+ # Define a query-passage pair
40
  query = "What is llama?"
41
  title = "Llama"
42
+ passage = "The llama is a domesticated South American camelid, widely used as a meat and pack animal by Andean cultures since the pre-Columbian era."
43
 
44
+ # Tokenize the query-passage pair
45
+ inputs = tokenizer(f'query: {query}', f'document: {title} {passage}</s>', return_tensors='pt')
46
 
47
  # Run the model forward
48
  with torch.no_grad():