File size: 2,159 Bytes
2804d79 23f7652 2804d79 23f7652 2804d79 23f7652 2804d79 534c86e 23f7652 2804d79 23f7652 2804d79 534c86e 2804d79 23f7652 2804d79 23f7652 2804d79 23f7652 2804d79 23f7652 2804d79 23f7652 2804d79 23f7652 2804d79 23f7652 2804d79 23f7652 2804d79 23f7652 2804d79 23f7652 2804d79 23f7652 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
model-index:
- name: flippa-v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flippa-v2
This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on a mixed dataset of filtered non-refusal data, math, and code.
It achieves the following results on the evaluation set:
- Loss: 0.9289
## Model description
My second test of experiments using Quantitized LoRA and Mistral-7B-Instruct, trained on A100 in one hour, will increase training times and amount of data as I gain access to more GPUs.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.5374 | 0.99 | 37 | 1.4226 |
| 1.1746 | 2.0 | 75 | 1.2444 |
| 1.0746 | 2.99 | 112 | 1.1636 |
| 0.9931 | 4.0 | 150 | 1.1037 |
| 0.9587 | 4.99 | 187 | 1.0549 |
| 0.9101 | 6.0 | 225 | 1.0124 |
| 0.8847 | 6.99 | 262 | 0.9782 |
| 0.8239 | 8.0 | 300 | 0.9515 |
| 0.818 | 8.99 | 337 | 0.9345 |
| 0.7882 | 9.87 | 370 | 0.9289 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |