File size: 2,159 Bytes
2804d79
23f7652
 
 
 
 
 
 
 
2804d79
 
23f7652
 
2804d79
23f7652
2804d79
534c86e
23f7652
 
2804d79
23f7652
2804d79
534c86e
2804d79
23f7652
2804d79
23f7652
2804d79
23f7652
2804d79
23f7652
2804d79
23f7652
2804d79
23f7652
2804d79
23f7652
 
 
 
 
 
 
 
 
 
 
 
2804d79
23f7652
2804d79
23f7652
 
 
 
 
 
 
 
 
 
 
 
2804d79
 
23f7652
2804d79
23f7652
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
model-index:
- name: flippa-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flippa-v2

This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on a mixed dataset of filtered non-refusal data, math, and code.
It achieves the following results on the evaluation set:
- Loss: 0.9289

## Model description

My second test of experiments using Quantitized LoRA and Mistral-7B-Instruct, trained on A100 in one hour, will increase training times and amount of data as I gain access to more GPUs.

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.5374        | 0.99  | 37   | 1.4226          |
| 1.1746        | 2.0   | 75   | 1.2444          |
| 1.0746        | 2.99  | 112  | 1.1636          |
| 0.9931        | 4.0   | 150  | 1.1037          |
| 0.9587        | 4.99  | 187  | 1.0549          |
| 0.9101        | 6.0   | 225  | 1.0124          |
| 0.8847        | 6.99  | 262  | 0.9782          |
| 0.8239        | 8.0   | 300  | 0.9515          |
| 0.818         | 8.99  | 337  | 0.9345          |
| 0.7882        | 9.87  | 370  | 0.9289          |


### Framework versions

- PEFT 0.9.0
- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2