Add model card
Browse files
README.md
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Twitter-scratch-roBERTa-base
|
| 2 |
+
|
| 3 |
+
This is a RoBERTa-base model trained from scratch on ~58M tweets, as described and evaluated in the [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf).
|
| 4 |
+
To evaluate this and other LMs on Twitter-specific data, please refer to the [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval).
|
| 5 |
+
|
| 6 |
+
## Preprocess Text
|
| 7 |
+
Replace usernames and links for placeholders: "@user" and "http".
|
| 8 |
+
```python
|
| 9 |
+
def preprocess(text):
|
| 10 |
+
new_text = []
|
| 11 |
+
for t in text.split(" "):
|
| 12 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
| 13 |
+
t = 'http' if t.startswith('http') else t
|
| 14 |
+
new_text.append(t)
|
| 15 |
+
return " ".join(new_text)
|
| 16 |
+
```
|
| 17 |
+
|
| 18 |
+
## Example Masked Language Model
|
| 19 |
+
|
| 20 |
+
```python
|
| 21 |
+
from transformers import pipeline, AutoTokenizer
|
| 22 |
+
import numpy as np
|
| 23 |
+
|
| 24 |
+
MODEL = "cardiffnlp/twitter-scratch-roberta-base"
|
| 25 |
+
fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL)
|
| 26 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
| 27 |
+
|
| 28 |
+
def print_candidates():
|
| 29 |
+
for i in range(5):
|
| 30 |
+
token = tokenizer.decode(candidates[i]['token'])
|
| 31 |
+
score = np.round(candidates[i]['score'], 4)
|
| 32 |
+
print(f"{i+1}) {token} {score}")
|
| 33 |
+
|
| 34 |
+
texts = [
|
| 35 |
+
"I am so <mask> ๐",
|
| 36 |
+
"I am so <mask> ๐ข"
|
| 37 |
+
]
|
| 38 |
+
for text in texts:
|
| 39 |
+
t = preprocess(text)
|
| 40 |
+
print(f"{'-'*30}\n{t}")
|
| 41 |
+
candidates = fill_mask(t)
|
| 42 |
+
print_candidates()
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
Output:
|
| 46 |
+
|
| 47 |
+
```
|
| 48 |
+
------------------------------
|
| 49 |
+
I am so <mask> ๐
|
| 50 |
+
1) happy 0.530
|
| 51 |
+
2) grateful 0.083
|
| 52 |
+
3) excited 0.078
|
| 53 |
+
4) thankful 0.053
|
| 54 |
+
5) blessed 0.041
|
| 55 |
+
------------------------------
|
| 56 |
+
I am so <mask> ๐ข
|
| 57 |
+
1) sad 0.439
|
| 58 |
+
2) sorry 0.088
|
| 59 |
+
3) tired 0.045
|
| 60 |
+
4) hurt 0.026
|
| 61 |
+
5) upset 0.026
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
### BibTeX entry and citation info
|
| 66 |
+
|
| 67 |
+
Please cite the [reference paper](https://aclanthology.org/2020.findings-emnlp.148/) if you use this model.
|
| 68 |
+
|
| 69 |
+
```bibtex
|
| 70 |
+
@inproceedings{barbieri-etal-2020-tweeteval,
|
| 71 |
+
title = "{T}weet{E}val: Unified Benchmark and Comparative Evaluation for Tweet Classification",
|
| 72 |
+
author = "Barbieri, Francesco and
|
| 73 |
+
Camacho-Collados, Jose and
|
| 74 |
+
Espinosa Anke, Luis and
|
| 75 |
+
Neves, Leonardo",
|
| 76 |
+
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
|
| 77 |
+
month = nov,
|
| 78 |
+
year = "2020",
|
| 79 |
+
address = "Online",
|
| 80 |
+
publisher = "Association for Computational Linguistics",
|
| 81 |
+
url = "https://aclanthology.org/2020.findings-emnlp.148",
|
| 82 |
+
doi = "10.18653/v1/2020.findings-emnlp.148",
|
| 83 |
+
pages = "1644--1650"
|
| 84 |
+
}
|
| 85 |
+
```
|