Update README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# cardiffnlp/twitter-roberta-base-latest-tempo-wic
|
2 |
|
3 |
-
This is a
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
```python
|
6 |
from transformers import pipeline
|
7 |
text_1 = "We don't like the search and frisk so this bitch in neutral"
|
@@ -11,4 +27,17 @@ text_input = f"{text_1}</s>{text_2}"
|
|
11 |
pipe = pipeline('text-classification', model="cardiffnlp/twitter-roberta-base-latest-tempo-wic")
|
12 |
pipe(text_input)
|
13 |
>> [{'label': 'yes', 'score': 0.9994196891784668}]
|
14 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- cardiffnlp/super_tweeteval
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
pipeline_tag: text-classification
|
8 |
+
---
|
9 |
# cardiffnlp/twitter-roberta-base-latest-tempo-wic
|
10 |
|
11 |
+
This is a RoBERTa-base model trained on 154M tweets until the end of December 2022 and finetuned for meaning shift detection (binary classification) on the _TempoWIC_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval).
|
12 |
+
The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2022-154m).
|
13 |
|
14 |
+
## Labels
|
15 |
+
"id2label": {
|
16 |
+
"0": "no",
|
17 |
+
"1": "yes"
|
18 |
+
}
|
19 |
+
|
20 |
+
## Example
|
21 |
```python
|
22 |
from transformers import pipeline
|
23 |
text_1 = "We don't like the search and frisk so this bitch in neutral"
|
|
|
27 |
pipe = pipeline('text-classification', model="cardiffnlp/twitter-roberta-base-latest-tempo-wic")
|
28 |
pipe(text_input)
|
29 |
>> [{'label': 'yes', 'score': 0.9994196891784668}]
|
30 |
+
```
|
31 |
+
|
32 |
+
## Citation Information
|
33 |
+
|
34 |
+
Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this model.
|
35 |
+
|
36 |
+
```bibtex
|
37 |
+
@inproceedings{antypas2023supertweeteval,
|
38 |
+
title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research},
|
39 |
+
author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados},
|
40 |
+
booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023},
|
41 |
+
year={2023}
|
42 |
+
}
|
43 |
+
```
|