--- language: - he license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: he results: [] --- # he This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4955 - Wer: 81.1538 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8944 | 2.27 | 50 | 1.3441 | 106.9231 | | 0.9601 | 4.55 | 100 | 0.7752 | 104.2308 | | 0.5514 | 6.82 | 150 | 0.5895 | 100.5128 | | 0.3454 | 9.09 | 200 | 0.5149 | 97.1795 | | 0.1951 | 11.36 | 250 | 0.4918 | 83.4615 | | 0.1149 | 13.64 | 300 | 0.4955 | 81.1538 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1